Bingbing Cui, Haohao Cui, Xingchen Geng, Nan Zhang, Liuqi Shi, Zhanrong Li, Jianliang Shen, Jingguo Li
{"title":"雷帕霉素原位递送壳聚糖/环糊精/儿茶酚凝胶的合成与表征。","authors":"Bingbing Cui, Haohao Cui, Xingchen Geng, Nan Zhang, Liuqi Shi, Zhanrong Li, Jianliang Shen, Jingguo Li","doi":"10.1002/mabi.202400596","DOIUrl":null,"url":null,"abstract":"<p><p>Innovative in situ drug-releasing hydrogels are emerging as a promising therapeutic strategy for anterior segment ocular diseases, leveraging the unique anatomy of the eye. Rapamycin (RAP) is an effective immunosuppressive agent for organ transplantation; however, high hydrophobicity and low bioavailability have strongly constrained its clinical application. Chitosan (CS) is used as the backbone, and RAP can be loaded through supramolecular host-guest interactions of cyclodextrin (CD) to obtain chitosan-conjugated-(cydodextrin with 3,4-dihydroxyhrocinnamic acid) and loaded with rapamycin (CCH/RAP) with controlled drug release properties. Here, an in situ drug-releasing hydrogel prepared by a simple amidation reaction is reported. It is discovered that the prepared conjugated polymers can form hydrogel crosslinked networks through non-covalent bonds. The design of the in situ hydrogel allows for excellent transparency and suitable pore size, which can ensure that it can be used in ocular applications. Moreover, drug release results show that the introduction of CD effectively delays the initial release of RAP. This pioneering work presents an eco-friendly method for fabricating hydrogels with superior drug delivery capabilities, which hold significant potential in mitigating immune rejection following corneal transplantation.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400596"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of In Situ Chitosan/Cyclodextrin/Catechol Gel for Rapamycin Delivery.\",\"authors\":\"Bingbing Cui, Haohao Cui, Xingchen Geng, Nan Zhang, Liuqi Shi, Zhanrong Li, Jianliang Shen, Jingguo Li\",\"doi\":\"10.1002/mabi.202400596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Innovative in situ drug-releasing hydrogels are emerging as a promising therapeutic strategy for anterior segment ocular diseases, leveraging the unique anatomy of the eye. Rapamycin (RAP) is an effective immunosuppressive agent for organ transplantation; however, high hydrophobicity and low bioavailability have strongly constrained its clinical application. Chitosan (CS) is used as the backbone, and RAP can be loaded through supramolecular host-guest interactions of cyclodextrin (CD) to obtain chitosan-conjugated-(cydodextrin with 3,4-dihydroxyhrocinnamic acid) and loaded with rapamycin (CCH/RAP) with controlled drug release properties. Here, an in situ drug-releasing hydrogel prepared by a simple amidation reaction is reported. It is discovered that the prepared conjugated polymers can form hydrogel crosslinked networks through non-covalent bonds. The design of the in situ hydrogel allows for excellent transparency and suitable pore size, which can ensure that it can be used in ocular applications. Moreover, drug release results show that the introduction of CD effectively delays the initial release of RAP. This pioneering work presents an eco-friendly method for fabricating hydrogels with superior drug delivery capabilities, which hold significant potential in mitigating immune rejection following corneal transplantation.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e2400596\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400596\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400596","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthesis and Characterization of In Situ Chitosan/Cyclodextrin/Catechol Gel for Rapamycin Delivery.
Innovative in situ drug-releasing hydrogels are emerging as a promising therapeutic strategy for anterior segment ocular diseases, leveraging the unique anatomy of the eye. Rapamycin (RAP) is an effective immunosuppressive agent for organ transplantation; however, high hydrophobicity and low bioavailability have strongly constrained its clinical application. Chitosan (CS) is used as the backbone, and RAP can be loaded through supramolecular host-guest interactions of cyclodextrin (CD) to obtain chitosan-conjugated-(cydodextrin with 3,4-dihydroxyhrocinnamic acid) and loaded with rapamycin (CCH/RAP) with controlled drug release properties. Here, an in situ drug-releasing hydrogel prepared by a simple amidation reaction is reported. It is discovered that the prepared conjugated polymers can form hydrogel crosslinked networks through non-covalent bonds. The design of the in situ hydrogel allows for excellent transparency and suitable pore size, which can ensure that it can be used in ocular applications. Moreover, drug release results show that the introduction of CD effectively delays the initial release of RAP. This pioneering work presents an eco-friendly method for fabricating hydrogels with superior drug delivery capabilities, which hold significant potential in mitigating immune rejection following corneal transplantation.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.