{"title":"TMEM63B作为哺乳动物口渴的高渗传感器。","authors":"Wenjie Zou, Siqi Deng, Xingyu Chen, Jiamin Ruan, Huize Wang, Wuqiang Zhan, Jingxin Wang, Zhiyong Liu, Zhiqiang Yan","doi":"10.1016/j.neuron.2025.02.012","DOIUrl":null,"url":null,"abstract":"<p><p>Thirst drives animals to reinstate water homeostasis by fluid intake. An increase in blood osmolality is thought to induce thirst by activating a hyperosmolar sensor expressed in the subfornical organ (SFO), but the molecular identity of this sensor remains elusive. Here, we provide behavioral and functional evidence to show that TMEM63B functions as a mammalian hyperosmolar sensor for thirst in SFO neurons. First, we showed that TMEM63B is expressed in SFO excitatory neurons and required for the neuronal responses to hypertonic stimulation. More importantly, heterologously expressed TMEM63B is activated by hypertonic stimuli, and point mutations can alter the reversal potential of the channel. Additionally, purified TMEM63B in liposomes exhibits osmolarity-gated currents. Finally, Tmem63b knockout mice have profound deficits in thirst, and deleting TMEM63B within SFO neurons recapitulated this phenotype. Taken together, these results provide a molecular basis for thirst and suggest that TMEM63B is a mammalian hyperosmolar sensor for thirst.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"1430-1445.e5"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TMEM63B functions as a mammalian hyperosmolar sensor for thirst.\",\"authors\":\"Wenjie Zou, Siqi Deng, Xingyu Chen, Jiamin Ruan, Huize Wang, Wuqiang Zhan, Jingxin Wang, Zhiyong Liu, Zhiqiang Yan\",\"doi\":\"10.1016/j.neuron.2025.02.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thirst drives animals to reinstate water homeostasis by fluid intake. An increase in blood osmolality is thought to induce thirst by activating a hyperosmolar sensor expressed in the subfornical organ (SFO), but the molecular identity of this sensor remains elusive. Here, we provide behavioral and functional evidence to show that TMEM63B functions as a mammalian hyperosmolar sensor for thirst in SFO neurons. First, we showed that TMEM63B is expressed in SFO excitatory neurons and required for the neuronal responses to hypertonic stimulation. More importantly, heterologously expressed TMEM63B is activated by hypertonic stimuli, and point mutations can alter the reversal potential of the channel. Additionally, purified TMEM63B in liposomes exhibits osmolarity-gated currents. Finally, Tmem63b knockout mice have profound deficits in thirst, and deleting TMEM63B within SFO neurons recapitulated this phenotype. Taken together, these results provide a molecular basis for thirst and suggest that TMEM63B is a mammalian hyperosmolar sensor for thirst.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"1430-1445.e5\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.02.012\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.02.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
TMEM63B functions as a mammalian hyperosmolar sensor for thirst.
Thirst drives animals to reinstate water homeostasis by fluid intake. An increase in blood osmolality is thought to induce thirst by activating a hyperosmolar sensor expressed in the subfornical organ (SFO), but the molecular identity of this sensor remains elusive. Here, we provide behavioral and functional evidence to show that TMEM63B functions as a mammalian hyperosmolar sensor for thirst in SFO neurons. First, we showed that TMEM63B is expressed in SFO excitatory neurons and required for the neuronal responses to hypertonic stimulation. More importantly, heterologously expressed TMEM63B is activated by hypertonic stimuli, and point mutations can alter the reversal potential of the channel. Additionally, purified TMEM63B in liposomes exhibits osmolarity-gated currents. Finally, Tmem63b knockout mice have profound deficits in thirst, and deleting TMEM63B within SFO neurons recapitulated this phenotype. Taken together, these results provide a molecular basis for thirst and suggest that TMEM63B is a mammalian hyperosmolar sensor for thirst.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.