结合铁凋亡诱导和HMGB1阻断的多功能甘草酸负载纳米平台增强肿瘤免疫治疗。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xuan Sha, Chuanbing Wang, Yang Liu, Nan Zhong, Yishi Lu, Qi Zhang, Shangyu Lu, Doudou He, Yingying Jin, Yuxia Tang, Shouju Wang
{"title":"结合铁凋亡诱导和HMGB1阻断的多功能甘草酸负载纳米平台增强肿瘤免疫治疗。","authors":"Xuan Sha, Chuanbing Wang, Yang Liu, Nan Zhong, Yishi Lu, Qi Zhang, Shangyu Lu, Doudou He, Yingying Jin, Yuxia Tang, Shouju Wang","doi":"10.1186/s12951-025-03307-z","DOIUrl":null,"url":null,"abstract":"<p><p>Inducing ferroptotic cell death has been recognized as a promising approach in cancer therapy. However, ferroptosis can provoke tumor infiltration by myeloid-derived suppressor cells (MDSCs) through HMGB1 secretion, causing a tumor suppressive immune response. On the other hand, ferroptosis also occurs the immune cells due to its non-selective properties, which can compromise anti-tumor immunity. To address these challenges, a two-pronged approach is proposed, encompassing selectively triggered ferroptosis in tumor cells and HMGB1 blockade, aimed at eliciting systemic anti-tumor immunity and alleviating immunosuppression. Herein, GSH-specific driven nanoplatform is composed of uniform FeOOH nanospindles coated with tetrasulfide bond-bridged mesoporous organosilica (DMOS) shell, and loaded with the HMGB1 inhibitor, glycyrrhizic acid (GA). This nanoplatform is endowed with high glutathione (GSH) depletion efficiency and exhibits highly efficient Fe<sup>2+</sup> and ROS generation capacity, which promotes the accumulation of LPO and subsequently induces ferroptosis. Concurrently, the inhibition of HMGB1 release counteracts the immunosuppressive effects within the tumor microenvironment. This innovative nanoplatform effectively suppresses the growth of 4T1 tumors and notably enhancing the therapeutic outcomes of immune checkpoint blockade across experimental data. The collective findings indicate its potential as a reliable therapeutic strategy for boosting ferroptosis-mediated tumor immunity with favorable safety profiles.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"224"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924601/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multifunctional glycyrrhizic acid-loaded nanoplatform combining ferroptosis induction and HMGB1 blockade for enhanced tumor immunotherapy.\",\"authors\":\"Xuan Sha, Chuanbing Wang, Yang Liu, Nan Zhong, Yishi Lu, Qi Zhang, Shangyu Lu, Doudou He, Yingying Jin, Yuxia Tang, Shouju Wang\",\"doi\":\"10.1186/s12951-025-03307-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inducing ferroptotic cell death has been recognized as a promising approach in cancer therapy. However, ferroptosis can provoke tumor infiltration by myeloid-derived suppressor cells (MDSCs) through HMGB1 secretion, causing a tumor suppressive immune response. On the other hand, ferroptosis also occurs the immune cells due to its non-selective properties, which can compromise anti-tumor immunity. To address these challenges, a two-pronged approach is proposed, encompassing selectively triggered ferroptosis in tumor cells and HMGB1 blockade, aimed at eliciting systemic anti-tumor immunity and alleviating immunosuppression. Herein, GSH-specific driven nanoplatform is composed of uniform FeOOH nanospindles coated with tetrasulfide bond-bridged mesoporous organosilica (DMOS) shell, and loaded with the HMGB1 inhibitor, glycyrrhizic acid (GA). This nanoplatform is endowed with high glutathione (GSH) depletion efficiency and exhibits highly efficient Fe<sup>2+</sup> and ROS generation capacity, which promotes the accumulation of LPO and subsequently induces ferroptosis. Concurrently, the inhibition of HMGB1 release counteracts the immunosuppressive effects within the tumor microenvironment. This innovative nanoplatform effectively suppresses the growth of 4T1 tumors and notably enhancing the therapeutic outcomes of immune checkpoint blockade across experimental data. The collective findings indicate its potential as a reliable therapeutic strategy for boosting ferroptosis-mediated tumor immunity with favorable safety profiles.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"224\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924601/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03307-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03307-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

诱导嗜铁细胞死亡已被认为是一种很有前途的癌症治疗方法。然而,铁下垂可通过HMGB1分泌引起骨髓源性抑制细胞(myelloid -derived suppressor cells, MDSCs)浸润肿瘤,引起肿瘤抑制免疫应答。另一方面,由于铁下垂的非选择性,免疫细胞也会发生铁下垂,从而影响抗肿瘤免疫。为了应对这些挑战,研究人员提出了一种双管齐下的方法,包括选择性触发肿瘤细胞铁下垂和HMGB1阻断,旨在激发全身抗肿瘤免疫和减轻免疫抑制。本文中,gsh特异性驱动的纳米平台由均匀的FeOOH纳米纺锤组成,这些纺锤表面包裹有四硫键桥接介孔有机硅(DMOS)外壳,并负载HMGB1抑制剂甘草酸(GA)。该纳米平台具有高谷胱甘肽(GSH)耗竭效率,并具有高效的Fe2+和ROS生成能力,从而促进LPO的积累并诱导铁凋亡。同时,抑制HMGB1的释放抵消了肿瘤微环境内的免疫抑制作用。这种创新的纳米平台有效地抑制了4T1肿瘤的生长,并显著提高了免疫检查点阻断的治疗效果。这些共同的发现表明,它有可能作为一种可靠的治疗策略,增强铁中毒介导的肿瘤免疫,并具有良好的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifunctional glycyrrhizic acid-loaded nanoplatform combining ferroptosis induction and HMGB1 blockade for enhanced tumor immunotherapy.

Inducing ferroptotic cell death has been recognized as a promising approach in cancer therapy. However, ferroptosis can provoke tumor infiltration by myeloid-derived suppressor cells (MDSCs) through HMGB1 secretion, causing a tumor suppressive immune response. On the other hand, ferroptosis also occurs the immune cells due to its non-selective properties, which can compromise anti-tumor immunity. To address these challenges, a two-pronged approach is proposed, encompassing selectively triggered ferroptosis in tumor cells and HMGB1 blockade, aimed at eliciting systemic anti-tumor immunity and alleviating immunosuppression. Herein, GSH-specific driven nanoplatform is composed of uniform FeOOH nanospindles coated with tetrasulfide bond-bridged mesoporous organosilica (DMOS) shell, and loaded with the HMGB1 inhibitor, glycyrrhizic acid (GA). This nanoplatform is endowed with high glutathione (GSH) depletion efficiency and exhibits highly efficient Fe2+ and ROS generation capacity, which promotes the accumulation of LPO and subsequently induces ferroptosis. Concurrently, the inhibition of HMGB1 release counteracts the immunosuppressive effects within the tumor microenvironment. This innovative nanoplatform effectively suppresses the growth of 4T1 tumors and notably enhancing the therapeutic outcomes of immune checkpoint blockade across experimental data. The collective findings indicate its potential as a reliable therapeutic strategy for boosting ferroptosis-mediated tumor immunity with favorable safety profiles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信