利用靶向基因组甲基化进行作物改良。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Zhibo Wang, Rebecca S Bart
{"title":"利用靶向基因组甲基化进行作物改良。","authors":"Zhibo Wang, Rebecca S Bart","doi":"10.1093/jxb/eraf131","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing allows scientists to specifically change the DNA sequence of an organism. This powerful technology now fuels basic biology discovery and tangible crop improvement efforts. There is a less well understood layer of information encoded in genomes, known collectively as 'epigenetics', that impacts gene expression, without changing the DNA sequence. Epigenetic processes allow organisms to rapidly respond to environmental fluctuation. Like genome editing, recent advances have demonstrated that it is possible to edit the epigenome of a plant and cause heritable phenotypic changes. In this review, we aim to specifically consider the unique advantages that targeted epigenome editing might provide over existing biotechnology tools. This review is aimed at a broad audience. We begin with a high-level overview of the tools currently available for crop improvement. Next, we present a more detailed overview of the key discoveries that have been made in recent years, primarily using the model system Arabidopsis, new efforts to extend targeted methylation to crop plants, the current status of the technology, and the challenges that remain to realize the full potential of targeted epigenome editing. We end with a forward-looking commentary on how epi-alleles might interface with breeding programs across a variety of crops.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"2394-2404"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using targeted genome methylation for crop improvement.\",\"authors\":\"Zhibo Wang, Rebecca S Bart\",\"doi\":\"10.1093/jxb/eraf131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome editing allows scientists to specifically change the DNA sequence of an organism. This powerful technology now fuels basic biology discovery and tangible crop improvement efforts. There is a less well understood layer of information encoded in genomes, known collectively as 'epigenetics', that impacts gene expression, without changing the DNA sequence. Epigenetic processes allow organisms to rapidly respond to environmental fluctuation. Like genome editing, recent advances have demonstrated that it is possible to edit the epigenome of a plant and cause heritable phenotypic changes. In this review, we aim to specifically consider the unique advantages that targeted epigenome editing might provide over existing biotechnology tools. This review is aimed at a broad audience. We begin with a high-level overview of the tools currently available for crop improvement. Next, we present a more detailed overview of the key discoveries that have been made in recent years, primarily using the model system Arabidopsis, new efforts to extend targeted methylation to crop plants, the current status of the technology, and the challenges that remain to realize the full potential of targeted epigenome editing. We end with a forward-looking commentary on how epi-alleles might interface with breeding programs across a variety of crops.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"2394-2404\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf131\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基因组编辑使科学家能够专门改变生物体的DNA序列。这项强大的技术现在推动了基础生物学的发现和切实的作物改良工作。基因组中还有一层不太为人所知的编码信息,统称为“表观遗传学”,它会影响基因表达,但不会改变DNA序列。表观遗传过程使生物体能够迅速对环境波动作出反应。与基因组编辑一样,最近的进展表明,编辑植物的表观基因组并引起遗传表型变化是可能的。在这篇综述中,我们的目的是特别考虑靶向表观基因组编辑可能提供的独特优势超过现有的生物技术工具。这篇评论是针对广大读者的。我们首先对目前可用于作物改良的工具进行高层次的概述。接下来,我们将更详细地概述近年来取得的关键发现,主要是利用拟南芥模型系统,将靶向甲基化扩展到作物植物的新努力,技术的现状以及实现靶向表观基因组编辑的全部潜力所面临的挑战。最后,我们前瞻性地评论了外接等位基因如何与多种作物的育种计划相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using targeted genome methylation for crop improvement.

Genome editing allows scientists to specifically change the DNA sequence of an organism. This powerful technology now fuels basic biology discovery and tangible crop improvement efforts. There is a less well understood layer of information encoded in genomes, known collectively as 'epigenetics', that impacts gene expression, without changing the DNA sequence. Epigenetic processes allow organisms to rapidly respond to environmental fluctuation. Like genome editing, recent advances have demonstrated that it is possible to edit the epigenome of a plant and cause heritable phenotypic changes. In this review, we aim to specifically consider the unique advantages that targeted epigenome editing might provide over existing biotechnology tools. This review is aimed at a broad audience. We begin with a high-level overview of the tools currently available for crop improvement. Next, we present a more detailed overview of the key discoveries that have been made in recent years, primarily using the model system Arabidopsis, new efforts to extend targeted methylation to crop plants, the current status of the technology, and the challenges that remain to realize the full potential of targeted epigenome editing. We end with a forward-looking commentary on how epi-alleles might interface with breeding programs across a variety of crops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信