内生细菌辅助向日葵茎中镉的去除:迈向安全的生物质回收。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Liwei Chen, Qiuguo Zhang, Wei Li, Yue Xie, Tingli Wang, Jian Liu
{"title":"内生细菌辅助向日葵茎中镉的去除:迈向安全的生物质回收。","authors":"Liwei Chen, Qiuguo Zhang, Wei Li, Yue Xie, Tingli Wang, Jian Liu","doi":"10.1080/09593330.2025.2478180","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) contamination in agricultural soils is one of the major threats to food safety and environmental health. In a phytoremediation program for the extraction of Cd by plants, one critical challenge is the management of harvested biomass because of its highly contaminant content. This study investigates the use of endophytic bacteria to assist in Cd removal from sunflower stalks, aiming to make the biomass safer for reuse as fertilizer. Sixteen endophyte strains were isolated from sunflower plants grown in Cd-contaminated soils, out of which two strains, J14 and J15, namely <i>Enterobacter roggenkampii</i> and <i>Kosakonia cowanii</i>, respectively, showed the most potential for Cd removal. Under the optimized conditions, 42.03% and 37.99% Cd removal efficiency could be achieved by J14 and J15, respectively. More than 50% of some specific forms of Cd (F2, F4, F5) in sunflower stalks can be reduced during extraction. Importantly, the treatment with endophytes lowered Cd in contaminated biomass without significant reductions in the major plant nutrients (nitrogen, phosphorus, and potassium), thus rendering it safe for its reuse as fertilizer. This study offers a novel perspective on biomass contamination in phytoremediation, suggesting a new environmentally friendly approach for the recycling of polluted plant material towards safer and more economic phytoremediation practices.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-14"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endophytic bacteria-assisted cadmium removal in sunflower stalks: towards safe biomass recycling.\",\"authors\":\"Liwei Chen, Qiuguo Zhang, Wei Li, Yue Xie, Tingli Wang, Jian Liu\",\"doi\":\"10.1080/09593330.2025.2478180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cadmium (Cd) contamination in agricultural soils is one of the major threats to food safety and environmental health. In a phytoremediation program for the extraction of Cd by plants, one critical challenge is the management of harvested biomass because of its highly contaminant content. This study investigates the use of endophytic bacteria to assist in Cd removal from sunflower stalks, aiming to make the biomass safer for reuse as fertilizer. Sixteen endophyte strains were isolated from sunflower plants grown in Cd-contaminated soils, out of which two strains, J14 and J15, namely <i>Enterobacter roggenkampii</i> and <i>Kosakonia cowanii</i>, respectively, showed the most potential for Cd removal. Under the optimized conditions, 42.03% and 37.99% Cd removal efficiency could be achieved by J14 and J15, respectively. More than 50% of some specific forms of Cd (F2, F4, F5) in sunflower stalks can be reduced during extraction. Importantly, the treatment with endophytes lowered Cd in contaminated biomass without significant reductions in the major plant nutrients (nitrogen, phosphorus, and potassium), thus rendering it safe for its reuse as fertilizer. This study offers a novel perspective on biomass contamination in phytoremediation, suggesting a new environmentally friendly approach for the recycling of polluted plant material towards safer and more economic phytoremediation practices.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2478180\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2478180","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农业土壤中的镉污染是食品安全和环境健康的主要威胁之一。在植物提取镉的植物修复项目中,一个关键的挑战是收获的生物质的管理,因为它的高污染物含量。本研究探讨了利用内生细菌协助向日葵秸秆脱除Cd的方法,旨在使生物质更安全地作为肥料再利用。从Cd污染土壤向日葵植株中分离到16株内生菌,其中J14和J15分别为罗根坎皮肠杆菌(Enterobacter roggenkampii)和科瓦尼肠杆菌(Kosakonia cowanii),对Cd的去除能力最强。在优化条件下,J14和J15的Cd去除率分别为42.03%和37.99%。向日葵茎中某些特定形态的Cd (F2, F4, F5)在提取过程中可降低50%以上。重要的是,内生菌处理降低了受污染生物量中的Cd,而没有显著减少主要植物营养物质(氮、磷和钾),从而使其可以安全地用作肥料。本研究为生物质污染在植物修复中的应用提供了一个新的视角,为污染植物材料的回收利用提供了一条更安全、更经济的植物修复新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endophytic bacteria-assisted cadmium removal in sunflower stalks: towards safe biomass recycling.

Cadmium (Cd) contamination in agricultural soils is one of the major threats to food safety and environmental health. In a phytoremediation program for the extraction of Cd by plants, one critical challenge is the management of harvested biomass because of its highly contaminant content. This study investigates the use of endophytic bacteria to assist in Cd removal from sunflower stalks, aiming to make the biomass safer for reuse as fertilizer. Sixteen endophyte strains were isolated from sunflower plants grown in Cd-contaminated soils, out of which two strains, J14 and J15, namely Enterobacter roggenkampii and Kosakonia cowanii, respectively, showed the most potential for Cd removal. Under the optimized conditions, 42.03% and 37.99% Cd removal efficiency could be achieved by J14 and J15, respectively. More than 50% of some specific forms of Cd (F2, F4, F5) in sunflower stalks can be reduced during extraction. Importantly, the treatment with endophytes lowered Cd in contaminated biomass without significant reductions in the major plant nutrients (nitrogen, phosphorus, and potassium), thus rendering it safe for its reuse as fertilizer. This study offers a novel perspective on biomass contamination in phytoremediation, suggesting a new environmentally friendly approach for the recycling of polluted plant material towards safer and more economic phytoremediation practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信