常压脑积水的缺血是继发于静脉压迫还是动脉收缩?对Ohmura等人的评论。

IF 5.9 1区 医学 Q1 NEUROSCIENCES
Grant Alexander Bateman, Alexander Robert Bateman
{"title":"常压脑积水的缺血是继发于静脉压迫还是动脉收缩?对Ohmura等人的评论。","authors":"Grant Alexander Bateman, Alexander Robert Bateman","doi":"10.1186/s12987-025-00640-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In a recent study of normal pressure hydrocephalus published by Ohmura et al., there was a progressive reduction in the cerebral blood volume within the cortex, as measured by near-infrared spectroscopy, following an increase in the intracranial pressure from an infusion study. The authors contend that this reduction in blood volume occurred due to the collapse of the venous structures, starting from the smallest veins adjacent to the capillaries and involving the entire venous outflow tract. We wish to outline some problems with this interpretation.</p><p><strong>Main body: </strong>It has been previously shown that venous collapse secondary to an increase in intracranial pressure always starts at the most distal point in the veins. The critical buckling pressure for a tube depends on the cube of the ratio of the wall thickness and the internal diameter. The smallest veins have ratios which are larger than the distal cortical veins, so the latter are the ones to collapse first. The collapse of the distal venous outflow cuff always leads to an increase in the transmural pressure of the veins upstream from it, leading to venous dilatation and not a reduction in venous volume. Only a simultaneous arteriolar constriction of a greater volume than the venous volume increase can account for the progressive reduction in blood volume, which occurs once the ICP is greater than the sinus outflow pressure in normal pressure hydrocephalus.</p><p><strong>Conclusions: </strong>The reduction in cerebral blood volume which occurs in the cortex in normal pressure hydrocephalus cannot be due to widespread venous collapse. Therefore, there must be a large component of arteriolar constriction accompanying this disease.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"29"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924840/pdf/","citationCount":"0","resultStr":"{\"title\":\"Is the ischemia found in normal pressure hydrocephalus secondary to venous compression or arterial constriction? A comment on Ohmura et al.\",\"authors\":\"Grant Alexander Bateman, Alexander Robert Bateman\",\"doi\":\"10.1186/s12987-025-00640-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In a recent study of normal pressure hydrocephalus published by Ohmura et al., there was a progressive reduction in the cerebral blood volume within the cortex, as measured by near-infrared spectroscopy, following an increase in the intracranial pressure from an infusion study. The authors contend that this reduction in blood volume occurred due to the collapse of the venous structures, starting from the smallest veins adjacent to the capillaries and involving the entire venous outflow tract. We wish to outline some problems with this interpretation.</p><p><strong>Main body: </strong>It has been previously shown that venous collapse secondary to an increase in intracranial pressure always starts at the most distal point in the veins. The critical buckling pressure for a tube depends on the cube of the ratio of the wall thickness and the internal diameter. The smallest veins have ratios which are larger than the distal cortical veins, so the latter are the ones to collapse first. The collapse of the distal venous outflow cuff always leads to an increase in the transmural pressure of the veins upstream from it, leading to venous dilatation and not a reduction in venous volume. Only a simultaneous arteriolar constriction of a greater volume than the venous volume increase can account for the progressive reduction in blood volume, which occurs once the ICP is greater than the sinus outflow pressure in normal pressure hydrocephalus.</p><p><strong>Conclusions: </strong>The reduction in cerebral blood volume which occurs in the cortex in normal pressure hydrocephalus cannot be due to widespread venous collapse. Therefore, there must be a large component of arteriolar constriction accompanying this disease.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"22 1\",\"pages\":\"29\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924840/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-025-00640-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00640-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:在Ohmura等人最近发表的一项常压脑积水研究中,通过近红外光谱测量,在输注研究中颅内压增加后,皮层内的脑血容量逐渐减少。作者认为,这种血容量的减少是由于静脉结构的崩溃,从邻近毛细血管的最小静脉开始,并涉及整个静脉流出道。我们希望概述这种解释的一些问题。主体:先前的研究表明,颅内压升高引起的静脉塌陷总是从静脉的最末端开始。管道的临界屈曲压力取决于管壁厚度与内径之比的立方。最小的静脉比远端皮质静脉的比例大,因此后者是最先塌陷的静脉。远端静脉流出袖带的塌陷总是导致其上游静脉的跨壁压力增加,导致静脉扩张而不减少静脉容量。在正常压力型脑积水中,当颅内压大于窦流出压力时,只有同时小动脉收缩的体积大于静脉体积的增加,才能解释血容量的进行性减少。结论:常压脑积水发生于皮质的脑血容量减少不可能是由于广泛的静脉萎陷所致。因此,伴随此病的一定有很大一部分是小动脉收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is the ischemia found in normal pressure hydrocephalus secondary to venous compression or arterial constriction? A comment on Ohmura et al.

Background: In a recent study of normal pressure hydrocephalus published by Ohmura et al., there was a progressive reduction in the cerebral blood volume within the cortex, as measured by near-infrared spectroscopy, following an increase in the intracranial pressure from an infusion study. The authors contend that this reduction in blood volume occurred due to the collapse of the venous structures, starting from the smallest veins adjacent to the capillaries and involving the entire venous outflow tract. We wish to outline some problems with this interpretation.

Main body: It has been previously shown that venous collapse secondary to an increase in intracranial pressure always starts at the most distal point in the veins. The critical buckling pressure for a tube depends on the cube of the ratio of the wall thickness and the internal diameter. The smallest veins have ratios which are larger than the distal cortical veins, so the latter are the ones to collapse first. The collapse of the distal venous outflow cuff always leads to an increase in the transmural pressure of the veins upstream from it, leading to venous dilatation and not a reduction in venous volume. Only a simultaneous arteriolar constriction of a greater volume than the venous volume increase can account for the progressive reduction in blood volume, which occurs once the ICP is greater than the sinus outflow pressure in normal pressure hydrocephalus.

Conclusions: The reduction in cerebral blood volume which occurs in the cortex in normal pressure hydrocephalus cannot be due to widespread venous collapse. Therefore, there must be a large component of arteriolar constriction accompanying this disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信