{"title":"持续释放IL-10的透明质酸甲基丙烯酰水凝胶促进脊髓损伤后巨噬细胞M2极化和运动功能。","authors":"Zhihua Wang, Denghui Li, Yanghao Wang, Ping Yuan, Wan Zhang, Yihe Zhang, Fei He, Jianyi Yang, Hangchuan Bi, Hao Duan","doi":"10.1177/08853282251329302","DOIUrl":null,"url":null,"abstract":"<p><p>(1)Background: Inflammation plays a key role in spinal cord injury (SCI), where excessive inflammatory responses exacerbate neural damage and hinder regeneration. Modulating macrophage polarization, particularly through the sustained release of IL-10 to promote the anti-inflammatory M2 phenotype, represents a promising strategy to mitigate inflammation. In this study we developed a Hyaluronic Acid Methacryloyl (HAMA) hydrogel capable of sustained IL-10 release to regulate macrophage polarization and explore its therapeutic potential. (2)Methods: A photo-curable HAMA hydrogel was synthesized via methacrylation and designed for the sustained release of IL-10. The structural and functional properties were characterized using NMR and FT-IR. <i>In vitro</i> assays, including immunofluorescence, flow cytometry, and Western blotting, were performed to evaluate IL-10's effect on macrophage polarization. The anti-inflammatory and reparative effects of the hydrogel were further validated in a rat SCI. (3)Results: The HAMA hydrogel with sustained IL-10 release demonstrated excellent biocompatibility. It significantly promoted macrophage polarization to the anti-inflammatory M2 phenotype by increasing the expression of CD206. In vivo studies demonstrated that the group treated by HAMA with IL-10 exhibited recovery of sensory and motor functions, along with improvement of the inflammatory microenvironment at the site of injury. (4)Conclusion: The HAMA hydrogel with sustained IL-10 release effectively alleviates inflammation, enhances motor function after SCI, and serves as a promising immunomodulatory platform. This novel approach presents considerable potential for improving neural regeneration.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"3-19"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyaluronic acid methacryloyl hydrogel with sustained IL-10 release promotes macrophage M2 polarization and motor function after spinal cord injury.\",\"authors\":\"Zhihua Wang, Denghui Li, Yanghao Wang, Ping Yuan, Wan Zhang, Yihe Zhang, Fei He, Jianyi Yang, Hangchuan Bi, Hao Duan\",\"doi\":\"10.1177/08853282251329302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>(1)Background: Inflammation plays a key role in spinal cord injury (SCI), where excessive inflammatory responses exacerbate neural damage and hinder regeneration. Modulating macrophage polarization, particularly through the sustained release of IL-10 to promote the anti-inflammatory M2 phenotype, represents a promising strategy to mitigate inflammation. In this study we developed a Hyaluronic Acid Methacryloyl (HAMA) hydrogel capable of sustained IL-10 release to regulate macrophage polarization and explore its therapeutic potential. (2)Methods: A photo-curable HAMA hydrogel was synthesized via methacrylation and designed for the sustained release of IL-10. The structural and functional properties were characterized using NMR and FT-IR. <i>In vitro</i> assays, including immunofluorescence, flow cytometry, and Western blotting, were performed to evaluate IL-10's effect on macrophage polarization. The anti-inflammatory and reparative effects of the hydrogel were further validated in a rat SCI. (3)Results: The HAMA hydrogel with sustained IL-10 release demonstrated excellent biocompatibility. It significantly promoted macrophage polarization to the anti-inflammatory M2 phenotype by increasing the expression of CD206. In vivo studies demonstrated that the group treated by HAMA with IL-10 exhibited recovery of sensory and motor functions, along with improvement of the inflammatory microenvironment at the site of injury. (4)Conclusion: The HAMA hydrogel with sustained IL-10 release effectively alleviates inflammation, enhances motor function after SCI, and serves as a promising immunomodulatory platform. This novel approach presents considerable potential for improving neural regeneration.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"3-19\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251329302\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251329302","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Hyaluronic acid methacryloyl hydrogel with sustained IL-10 release promotes macrophage M2 polarization and motor function after spinal cord injury.
(1)Background: Inflammation plays a key role in spinal cord injury (SCI), where excessive inflammatory responses exacerbate neural damage and hinder regeneration. Modulating macrophage polarization, particularly through the sustained release of IL-10 to promote the anti-inflammatory M2 phenotype, represents a promising strategy to mitigate inflammation. In this study we developed a Hyaluronic Acid Methacryloyl (HAMA) hydrogel capable of sustained IL-10 release to regulate macrophage polarization and explore its therapeutic potential. (2)Methods: A photo-curable HAMA hydrogel was synthesized via methacrylation and designed for the sustained release of IL-10. The structural and functional properties were characterized using NMR and FT-IR. In vitro assays, including immunofluorescence, flow cytometry, and Western blotting, were performed to evaluate IL-10's effect on macrophage polarization. The anti-inflammatory and reparative effects of the hydrogel were further validated in a rat SCI. (3)Results: The HAMA hydrogel with sustained IL-10 release demonstrated excellent biocompatibility. It significantly promoted macrophage polarization to the anti-inflammatory M2 phenotype by increasing the expression of CD206. In vivo studies demonstrated that the group treated by HAMA with IL-10 exhibited recovery of sensory and motor functions, along with improvement of the inflammatory microenvironment at the site of injury. (4)Conclusion: The HAMA hydrogel with sustained IL-10 release effectively alleviates inflammation, enhances motor function after SCI, and serves as a promising immunomodulatory platform. This novel approach presents considerable potential for improving neural regeneration.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.