基于染料分子固有波动的超分辨率显微镜。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-04 eCollection Date: 2025-03-01 DOI:10.1364/BOE.533263
Alexander Krupinski-Ptaszek, Adrian Makowski, Aleksandra Mielnicka, Monika Pawłowska, Ron Tenne, Radek Lapkiewicz
{"title":"基于染料分子固有波动的超分辨率显微镜。","authors":"Alexander Krupinski-Ptaszek, Adrian Makowski, Aleksandra Mielnicka, Monika Pawłowska, Ron Tenne, Radek Lapkiewicz","doi":"10.1364/BOE.533263","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence microscopy is a critical tool across various disciplines, from materials science to biomedical research, yet it is limited by the diffraction limit of resolution. Advanced super-resolution techniques such as localization microscopy and stimulated-emission-depletion microscopy often demand considerable resources. These methods depend heavily on elaborate sample-staining, complex optical systems, or prolonged acquisition periods, and their application in 3D and multicolor imaging presents significant experimental challenges. In the current work, we provide a complete demonstration of a widely accessible super-resolution imaging approach capable of 3D and multicolor imaging based on super-resolution optical fluctuation imaging (SOFI). We replace the confocal pinhole with an array of single-photon avalanche diodes and use the microsecond-scale fluctuations of dye molecules as a contrast mechanism. This contrast is transformed into a super-resolved image using a robust and deterministic algorithm. Our technique utilizes natural fluctuations inherent to organic dyes, thereby it does not require engineering of the blinking statistics. Our robust, versatile super-resolution method opens the way to next-generation multimodal imaging and facilitates on-demand super-resolution within a confocal architecture.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"910-921"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919343/pdf/","citationCount":"0","resultStr":"{\"title\":\"Super-resolution microscopy based on the inherent fluctuations of dye molecules.\",\"authors\":\"Alexander Krupinski-Ptaszek, Adrian Makowski, Aleksandra Mielnicka, Monika Pawłowska, Ron Tenne, Radek Lapkiewicz\",\"doi\":\"10.1364/BOE.533263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescence microscopy is a critical tool across various disciplines, from materials science to biomedical research, yet it is limited by the diffraction limit of resolution. Advanced super-resolution techniques such as localization microscopy and stimulated-emission-depletion microscopy often demand considerable resources. These methods depend heavily on elaborate sample-staining, complex optical systems, or prolonged acquisition periods, and their application in 3D and multicolor imaging presents significant experimental challenges. In the current work, we provide a complete demonstration of a widely accessible super-resolution imaging approach capable of 3D and multicolor imaging based on super-resolution optical fluctuation imaging (SOFI). We replace the confocal pinhole with an array of single-photon avalanche diodes and use the microsecond-scale fluctuations of dye molecules as a contrast mechanism. This contrast is transformed into a super-resolved image using a robust and deterministic algorithm. Our technique utilizes natural fluctuations inherent to organic dyes, thereby it does not require engineering of the blinking statistics. Our robust, versatile super-resolution method opens the way to next-generation multimodal imaging and facilitates on-demand super-resolution within a confocal architecture.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 3\",\"pages\":\"910-921\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919343/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.533263\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.533263","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

从材料科学到生物医学研究,荧光显微镜是跨越各个学科的关键工具,但它受到分辨率的衍射极限的限制。先进的超分辨率技术,如定位显微镜和激发发射耗尽显微镜往往需要大量的资源。这些方法在很大程度上依赖于精细的样品染色、复杂的光学系统或较长的采集周期,并且它们在3D和多色成像中的应用提出了重大的实验挑战。在目前的工作中,我们提供了一种基于超分辨率光学波动成像(SOFI)的可广泛使用的超分辨率成像方法的完整演示,该方法能够实现3D和多色成像。我们用一组单光子雪崩二极管取代共聚焦针孔,并利用染料分子的微秒尺度波动作为对比机制。使用鲁棒和确定性算法将这种对比度转换为超分辨率图像。我们的技术利用了有机染料固有的自然波动,因此不需要对闪烁统计进行工程处理。我们稳健、通用的超分辨率方法为下一代多模态成像开辟了道路,并促进了共聚焦架构内的按需超分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-resolution microscopy based on the inherent fluctuations of dye molecules.

Fluorescence microscopy is a critical tool across various disciplines, from materials science to biomedical research, yet it is limited by the diffraction limit of resolution. Advanced super-resolution techniques such as localization microscopy and stimulated-emission-depletion microscopy often demand considerable resources. These methods depend heavily on elaborate sample-staining, complex optical systems, or prolonged acquisition periods, and their application in 3D and multicolor imaging presents significant experimental challenges. In the current work, we provide a complete demonstration of a widely accessible super-resolution imaging approach capable of 3D and multicolor imaging based on super-resolution optical fluctuation imaging (SOFI). We replace the confocal pinhole with an array of single-photon avalanche diodes and use the microsecond-scale fluctuations of dye molecules as a contrast mechanism. This contrast is transformed into a super-resolved image using a robust and deterministic algorithm. Our technique utilizes natural fluctuations inherent to organic dyes, thereby it does not require engineering of the blinking statistics. Our robust, versatile super-resolution method opens the way to next-generation multimodal imaging and facilitates on-demand super-resolution within a confocal architecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信