转化生长因子β2和β3在腭发育中的作用。

IF 2.9 4区 生物学 Q1 ANATOMY & MORPHOLOGY
Miwaki Aoki, Akira Nakajima, Nichika Fukumashi, Risako Okuma, Mitsuru Motoyoshi, Charles F Shuler
{"title":"转化生长因子β2和β3在腭发育中的作用。","authors":"Miwaki Aoki, Akira Nakajima, Nichika Fukumashi, Risako Okuma, Mitsuru Motoyoshi, Charles F Shuler","doi":"10.1159/000544097","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to examine the transforming growth factor (TGF)-β signaling pathway during secondary palate fusion by transfecting single and double small interfering RNA (siRNAs) for TGF-β2 and -β3. This investigation also focused on understanding the phenotype of palatal development.</p><p><strong>Methods: </strong>siRNAs targeting TGF-β2 and -β3 were used in an organ culture model of fusion of the secondary palate of 13-day embryonic ICR mice cultured for up to 72 h. The palatal shelves were collected at different times following the initiation of organ culture and were examined for TGF-β2 and -β3 gene expression. Downstream signaling was characterized using Western blotting and PCR.</p><p><strong>Results: </strong>In the double siRNA-treated palatal shelves, approximately 90% (91% anterior, 89% posterior with phenotype A) showed fusion failure in hematoxylin and eosin staining. Phosphorylation of Smad-dependent and -independent signaling showed a significant reduction in phosphorylation in double knockdown palate organ cultures when compared to single knockdown cultures. Although, the expression of matrix metalloproteinase 13 and TIMP2 were small influenced by siTGF-β2, the extracellular matrix and transcription factor expressions showed to be significantly reduced in double knockdown palate compared to single knockdown palates.</p><p><strong>Conclusions: </strong>This study demonstrates that double siRNAs targeting TGF-β2 and -β3 results in phenotypes during secondary palatal fusion and that they could be affected phosphorylation of Smad-dependent and -independent signaling synergistically compared to single knockdown of TGF-β2 and -β3. The results of this study demonstrate important functions during secondary palatal fusion and will contribute to our understanding of the etiology of cleft palate.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"1-15"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Function of Transforming Growth Factor β2 and β3 in Palatogenesis.\",\"authors\":\"Miwaki Aoki, Akira Nakajima, Nichika Fukumashi, Risako Okuma, Mitsuru Motoyoshi, Charles F Shuler\",\"doi\":\"10.1159/000544097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This study aimed to examine the transforming growth factor (TGF)-β signaling pathway during secondary palate fusion by transfecting single and double small interfering RNA (siRNAs) for TGF-β2 and -β3. This investigation also focused on understanding the phenotype of palatal development.</p><p><strong>Methods: </strong>siRNAs targeting TGF-β2 and -β3 were used in an organ culture model of fusion of the secondary palate of 13-day embryonic ICR mice cultured for up to 72 h. The palatal shelves were collected at different times following the initiation of organ culture and were examined for TGF-β2 and -β3 gene expression. Downstream signaling was characterized using Western blotting and PCR.</p><p><strong>Results: </strong>In the double siRNA-treated palatal shelves, approximately 90% (91% anterior, 89% posterior with phenotype A) showed fusion failure in hematoxylin and eosin staining. Phosphorylation of Smad-dependent and -independent signaling showed a significant reduction in phosphorylation in double knockdown palate organ cultures when compared to single knockdown cultures. Although, the expression of matrix metalloproteinase 13 and TIMP2 were small influenced by siTGF-β2, the extracellular matrix and transcription factor expressions showed to be significantly reduced in double knockdown palate compared to single knockdown palates.</p><p><strong>Conclusions: </strong>This study demonstrates that double siRNAs targeting TGF-β2 and -β3 results in phenotypes during secondary palatal fusion and that they could be affected phosphorylation of Smad-dependent and -independent signaling synergistically compared to single knockdown of TGF-β2 and -β3. The results of this study demonstrate important functions during secondary palatal fusion and will contribute to our understanding of the etiology of cleft palate.</p>\",\"PeriodicalId\":9717,\"journal\":{\"name\":\"Cells Tissues Organs\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells Tissues Organs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000544097\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000544097","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过转染单、双小干扰RNA (sirna)介导TGF-β2和-β3,探讨二次腭融合过程中转化生长因子(TGF)-β信号通路的变化。本研究也着重于了解腭发育的表型。方法:将靶向TGF-β2和-β3的sirna应用于13日龄ICR小鼠胚次腭融合器官培养模型,培养72 h。在器官培养开始后的不同时间收集腭架,检测TGF-β2和-β3基因表达。下游信号通过Western blotting和PCR进行表征。结果:在双sirna处理的腭架中,苏木精和伊红染色显示约90%(91%为前型,89%为后型,表型为A)融合失败。smad依赖性和非依赖性信号的磷酸化表明,与单敲除培养相比,双敲除腭器官培养的磷酸化显著减少。虽然siTGF-β2对基质金属蛋白酶13和TIMP2的表达影响较小,但与单敲下颚相比,双敲下颚的细胞外基质和转录因子表达明显降低。结论:本研究表明,与单敲除TGF-β2和-β3相比,靶向TGF-β2和-β3的双sirna可影响继发腭融合过程中的表型,并可协同影响smad依赖性和非依赖性信号的磷酸化。本研究结果显示了二次腭融合的重要功能,并将有助于我们了解腭裂的病因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Function of Transforming Growth Factor β2 and β3 in Palatogenesis.

Introduction: This study aimed to examine the transforming growth factor (TGF)-β signaling pathway during secondary palate fusion by transfecting single and double small interfering RNA (siRNAs) for TGF-β2 and -β3. This investigation also focused on understanding the phenotype of palatal development.

Methods: siRNAs targeting TGF-β2 and -β3 were used in an organ culture model of fusion of the secondary palate of 13-day embryonic ICR mice cultured for up to 72 h. The palatal shelves were collected at different times following the initiation of organ culture and were examined for TGF-β2 and -β3 gene expression. Downstream signaling was characterized using Western blotting and PCR.

Results: In the double siRNA-treated palatal shelves, approximately 90% (91% anterior, 89% posterior with phenotype A) showed fusion failure in hematoxylin and eosin staining. Phosphorylation of Smad-dependent and -independent signaling showed a significant reduction in phosphorylation in double knockdown palate organ cultures when compared to single knockdown cultures. Although, the expression of matrix metalloproteinase 13 and TIMP2 were small influenced by siTGF-β2, the extracellular matrix and transcription factor expressions showed to be significantly reduced in double knockdown palate compared to single knockdown palates.

Conclusions: This study demonstrates that double siRNAs targeting TGF-β2 and -β3 results in phenotypes during secondary palatal fusion and that they could be affected phosphorylation of Smad-dependent and -independent signaling synergistically compared to single knockdown of TGF-β2 and -β3. The results of this study demonstrate important functions during secondary palatal fusion and will contribute to our understanding of the etiology of cleft palate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells Tissues Organs
Cells Tissues Organs 生物-发育生物学
CiteScore
4.90
自引率
3.70%
发文量
45
审稿时长
6-12 weeks
期刊介绍: ''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信