Xiaoli Zhang, Mohamed M S Gaballa, Ahmed A Hasan, Yvonne Liu, Johann-Georg Hocher, Xin Chen, Liping Liu, Jian Li, Dominik Wigger, Christoph Reichetzeder, Saban Elitok, Burkhard Kleuser, Bernhard K Krämer, Berthold Hocher
{"title":"高盐摄入对大鼠葡萄糖代谢、肝功能和微生物组的影响:ACE抑制剂和血管紧张素II受体阻断剂的影响","authors":"Xiaoli Zhang, Mohamed M S Gaballa, Ahmed A Hasan, Yvonne Liu, Johann-Georg Hocher, Xin Chen, Liping Liu, Jian Li, Dominik Wigger, Christoph Reichetzeder, Saban Elitok, Burkhard Kleuser, Bernhard K Krämer, Berthold Hocher","doi":"10.1152/ajpcell.01036.2024","DOIUrl":null,"url":null,"abstract":"<p><p>High-salt diets (HSDs) are known to impact blood pressure and cardiovascular health, but their effects on glucose metabolism, liver function, and gut microbiota remain poorly understood. This study investigates how long-term HSD affects these physiological processes and evaluates the potential therapeutic effects of ACE inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs). Male Sprague-Dawley rats were fed a normal salt diet (0.3% NaCl), a moderate salt diet (2% NaCl), or a high-salt diet (8% NaCl) for 12 wk. Two subgroups in the HSD condition received telmisartan or enalapril. We assessed blood pressure, glucose homeostasis, liver inflammation, pancreatic function, and gut microbiota composition. HSD rats exhibited significantly higher blood pressure [130 ± 2 mmHg in normal diet (ND) vs. 144 ± 4 mmHg in HSD; <i>P</i> < 0.01], reduced fasting insulin (1.33 ± 0.14 ng/mL in ND vs. 0.60 ± 0.05 ng/mL in HSD; <i>P</i> < 0.01), and gut microbiota dysbiosis, with a 71% reduction in Ruminococcus species (<i>P</i> = 0.018). Liver inflammation, indicated by an increase in CD68+ macrophages, was also observed in the HSD group. Telmisartan treatment significantly reduced liver inflammation but did not fully restore metabolic homeostasis. HSD disrupts multiple physiological systems, including glucose metabolism and liver function, partly through gut microbiota alterations. ACEIs and ARBs provided partial protection, highlighting the need for multitargeted interventions to mitigate high-salt diet effects.<b>NEW & NOTEWORTHY</b> High-salt diet induces multisystem disruptions, including liver inflammation, reduced insulin levels, and gut microbiota imbalance. ACEIs and ARBs showed limited efficacy, highlighting the need for comprehensive therapeutic approaches.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1366-C1382"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of high salt intake on glucose metabolism, liver function, and the microbiome in rats: influence of ACE inhibitors and angiotensin II receptor blockers.\",\"authors\":\"Xiaoli Zhang, Mohamed M S Gaballa, Ahmed A Hasan, Yvonne Liu, Johann-Georg Hocher, Xin Chen, Liping Liu, Jian Li, Dominik Wigger, Christoph Reichetzeder, Saban Elitok, Burkhard Kleuser, Bernhard K Krämer, Berthold Hocher\",\"doi\":\"10.1152/ajpcell.01036.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-salt diets (HSDs) are known to impact blood pressure and cardiovascular health, but their effects on glucose metabolism, liver function, and gut microbiota remain poorly understood. This study investigates how long-term HSD affects these physiological processes and evaluates the potential therapeutic effects of ACE inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs). Male Sprague-Dawley rats were fed a normal salt diet (0.3% NaCl), a moderate salt diet (2% NaCl), or a high-salt diet (8% NaCl) for 12 wk. Two subgroups in the HSD condition received telmisartan or enalapril. We assessed blood pressure, glucose homeostasis, liver inflammation, pancreatic function, and gut microbiota composition. HSD rats exhibited significantly higher blood pressure [130 ± 2 mmHg in normal diet (ND) vs. 144 ± 4 mmHg in HSD; <i>P</i> < 0.01], reduced fasting insulin (1.33 ± 0.14 ng/mL in ND vs. 0.60 ± 0.05 ng/mL in HSD; <i>P</i> < 0.01), and gut microbiota dysbiosis, with a 71% reduction in Ruminococcus species (<i>P</i> = 0.018). Liver inflammation, indicated by an increase in CD68+ macrophages, was also observed in the HSD group. Telmisartan treatment significantly reduced liver inflammation but did not fully restore metabolic homeostasis. HSD disrupts multiple physiological systems, including glucose metabolism and liver function, partly through gut microbiota alterations. ACEIs and ARBs provided partial protection, highlighting the need for multitargeted interventions to mitigate high-salt diet effects.<b>NEW & NOTEWORTHY</b> High-salt diet induces multisystem disruptions, including liver inflammation, reduced insulin levels, and gut microbiota imbalance. ACEIs and ARBs showed limited efficacy, highlighting the need for comprehensive therapeutic approaches.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C1366-C1382\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.01036.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.01036.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Effects of high salt intake on glucose metabolism, liver function, and the microbiome in rats: influence of ACE inhibitors and angiotensin II receptor blockers.
High-salt diets (HSDs) are known to impact blood pressure and cardiovascular health, but their effects on glucose metabolism, liver function, and gut microbiota remain poorly understood. This study investigates how long-term HSD affects these physiological processes and evaluates the potential therapeutic effects of ACE inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs). Male Sprague-Dawley rats were fed a normal salt diet (0.3% NaCl), a moderate salt diet (2% NaCl), or a high-salt diet (8% NaCl) for 12 wk. Two subgroups in the HSD condition received telmisartan or enalapril. We assessed blood pressure, glucose homeostasis, liver inflammation, pancreatic function, and gut microbiota composition. HSD rats exhibited significantly higher blood pressure [130 ± 2 mmHg in normal diet (ND) vs. 144 ± 4 mmHg in HSD; P < 0.01], reduced fasting insulin (1.33 ± 0.14 ng/mL in ND vs. 0.60 ± 0.05 ng/mL in HSD; P < 0.01), and gut microbiota dysbiosis, with a 71% reduction in Ruminococcus species (P = 0.018). Liver inflammation, indicated by an increase in CD68+ macrophages, was also observed in the HSD group. Telmisartan treatment significantly reduced liver inflammation but did not fully restore metabolic homeostasis. HSD disrupts multiple physiological systems, including glucose metabolism and liver function, partly through gut microbiota alterations. ACEIs and ARBs provided partial protection, highlighting the need for multitargeted interventions to mitigate high-salt diet effects.NEW & NOTEWORTHY High-salt diet induces multisystem disruptions, including liver inflammation, reduced insulin levels, and gut microbiota imbalance. ACEIs and ARBs showed limited efficacy, highlighting the need for comprehensive therapeutic approaches.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.