Dinesh Kumar Saini, Rajeev Nayan Bahuguna, Madan Pal, Ashish Kumar Chaturvedi, S V Krishna Jagadish
{"title":"全基因组定位、等位基因指纹和单倍型验证为水稻表型可塑性的遗传控制提供了新的见解。","authors":"Dinesh Kumar Saini, Rajeev Nayan Bahuguna, Madan Pal, Ashish Kumar Chaturvedi, S V Krishna Jagadish","doi":"10.1111/pce.15477","DOIUrl":null,"url":null,"abstract":"<p><p>Plant density significantly impacts photosynthesis, crop growth, and yield, thereby shaping the [CO<sub>2</sub>] fertilization effect and intricate physiological interactions in rice. An association panel of 171 rice genotypes was evaluated for physiological and yield-related traits, including the cumulative response index, under both normal planting density (NPD) and low planting density (LPD) conditions. LPD, serving as a proxy for elevated atmospheric [CO<sub>2</sub>], significantly increased all trait values, except for harvest index, compared to NPD. A genome-wide association study identified 172 QTNs, including 12 associated with multiple traits under NPD or LPD conditions. Candidate gene mining and network analysis within QTN regions identified potential candidates such as OsHAK1, RGA1, OsalphaCA3, OsalphaCA4, OsalphaCA5, OsCYP38, and OsPIN1, influencing various physiological and yield-related traits under LPD conditions. A significant relationship between the percentage of favorable alleles in genotypes and their performance under different conditions was observed. Potential haplotypes were validated using genotypes identified with contrasting [CO<sub>2</sub>] responses, grown under LPD and Free-Air [CO<sub>2</sub>] Enrichment facility. These findings can aid in selectively breeding genotypes with favorable alleles or haplotypes to enhance [CO<sub>2</sub>] responsiveness in rice. Incorporating greater phenotypic plasticity can help develop climate-smart rice varieties that increase grain yield and quality while mitigating losses from warming temperatures.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide Mapping, Allelic Fingerprinting, and Haplotypes Validation Provide Insights Into the Genetic Control of Phenotypic Plasticity in Rice.\",\"authors\":\"Dinesh Kumar Saini, Rajeev Nayan Bahuguna, Madan Pal, Ashish Kumar Chaturvedi, S V Krishna Jagadish\",\"doi\":\"10.1111/pce.15477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant density significantly impacts photosynthesis, crop growth, and yield, thereby shaping the [CO<sub>2</sub>] fertilization effect and intricate physiological interactions in rice. An association panel of 171 rice genotypes was evaluated for physiological and yield-related traits, including the cumulative response index, under both normal planting density (NPD) and low planting density (LPD) conditions. LPD, serving as a proxy for elevated atmospheric [CO<sub>2</sub>], significantly increased all trait values, except for harvest index, compared to NPD. A genome-wide association study identified 172 QTNs, including 12 associated with multiple traits under NPD or LPD conditions. Candidate gene mining and network analysis within QTN regions identified potential candidates such as OsHAK1, RGA1, OsalphaCA3, OsalphaCA4, OsalphaCA5, OsCYP38, and OsPIN1, influencing various physiological and yield-related traits under LPD conditions. A significant relationship between the percentage of favorable alleles in genotypes and their performance under different conditions was observed. Potential haplotypes were validated using genotypes identified with contrasting [CO<sub>2</sub>] responses, grown under LPD and Free-Air [CO<sub>2</sub>] Enrichment facility. These findings can aid in selectively breeding genotypes with favorable alleles or haplotypes to enhance [CO<sub>2</sub>] responsiveness in rice. Incorporating greater phenotypic plasticity can help develop climate-smart rice varieties that increase grain yield and quality while mitigating losses from warming temperatures.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15477\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15477","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genome-Wide Mapping, Allelic Fingerprinting, and Haplotypes Validation Provide Insights Into the Genetic Control of Phenotypic Plasticity in Rice.
Plant density significantly impacts photosynthesis, crop growth, and yield, thereby shaping the [CO2] fertilization effect and intricate physiological interactions in rice. An association panel of 171 rice genotypes was evaluated for physiological and yield-related traits, including the cumulative response index, under both normal planting density (NPD) and low planting density (LPD) conditions. LPD, serving as a proxy for elevated atmospheric [CO2], significantly increased all trait values, except for harvest index, compared to NPD. A genome-wide association study identified 172 QTNs, including 12 associated with multiple traits under NPD or LPD conditions. Candidate gene mining and network analysis within QTN regions identified potential candidates such as OsHAK1, RGA1, OsalphaCA3, OsalphaCA4, OsalphaCA5, OsCYP38, and OsPIN1, influencing various physiological and yield-related traits under LPD conditions. A significant relationship between the percentage of favorable alleles in genotypes and their performance under different conditions was observed. Potential haplotypes were validated using genotypes identified with contrasting [CO2] responses, grown under LPD and Free-Air [CO2] Enrichment facility. These findings can aid in selectively breeding genotypes with favorable alleles or haplotypes to enhance [CO2] responsiveness in rice. Incorporating greater phenotypic plasticity can help develop climate-smart rice varieties that increase grain yield and quality while mitigating losses from warming temperatures.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.