Du Heon Ha, Byung Gi Kim, Jae Hyun Jeong, Ga Yoon Chae, Woongsik Jang, Dong Hwan Wang
{"title":"用于增强钙钛矿光电传感器界面亲和力的多桥lewis功能化自组装单层膜。","authors":"Du Heon Ha, Byung Gi Kim, Jae Hyun Jeong, Ga Yoon Chae, Woongsik Jang, Dong Hwan Wang","doi":"10.1002/cssc.202500061","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an asymmetric self-assembled monolayers (SAMs) architecture, ((5H-Diindolo[3,2-a:3',2'-c]carbazole-5,10,15-triyl)tris(propane-3,1-diyl))triphosphonic acid (3PATAT-C3), designed to advance interfacial engineering in perovskite photoelectric devices. The molecular design integrates three phosphonic acid anchoring groups, enabling robust bonding with the substrate to enhance sustainability. Strategically positioned Lewis basic oxygen and sulfur heteroatoms drive synergistic interactions, addressing the limitations of conventional SAMs by optimizing interfacial contact and surface coverage. The face-on orientation of the molecules promotes energy alignment (work function: 5.18 eV) and superior crystallization (grain size: 0.784±0.315 μm). These features collectively improve moisture resistance and charge transport efficiency. Performance metrics demonstrate significant enhancements, including a power conversion efficiency of 21.74 %, a reduction in dark current density (8.93×10<sup>-9</sup> A/cm<sup>2</sup>), and a shot noise-limited detectivity of 1.01×10<sup>13</sup> Jones. By applying multi-bridging strategies and sustainable chemistry principles, this work offers a paradigm shift for designing high-performance optoelectronic devices.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500061"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Bridged Lewis-Functionalized Self-Assembled Monolayers for Enhanced Interfacial Affinity in Perovskite Photoelectric Sensors.\",\"authors\":\"Du Heon Ha, Byung Gi Kim, Jae Hyun Jeong, Ga Yoon Chae, Woongsik Jang, Dong Hwan Wang\",\"doi\":\"10.1002/cssc.202500061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces an asymmetric self-assembled monolayers (SAMs) architecture, ((5H-Diindolo[3,2-a:3',2'-c]carbazole-5,10,15-triyl)tris(propane-3,1-diyl))triphosphonic acid (3PATAT-C3), designed to advance interfacial engineering in perovskite photoelectric devices. The molecular design integrates three phosphonic acid anchoring groups, enabling robust bonding with the substrate to enhance sustainability. Strategically positioned Lewis basic oxygen and sulfur heteroatoms drive synergistic interactions, addressing the limitations of conventional SAMs by optimizing interfacial contact and surface coverage. The face-on orientation of the molecules promotes energy alignment (work function: 5.18 eV) and superior crystallization (grain size: 0.784±0.315 μm). These features collectively improve moisture resistance and charge transport efficiency. Performance metrics demonstrate significant enhancements, including a power conversion efficiency of 21.74 %, a reduction in dark current density (8.93×10<sup>-9</sup> A/cm<sup>2</sup>), and a shot noise-limited detectivity of 1.01×10<sup>13</sup> Jones. By applying multi-bridging strategies and sustainable chemistry principles, this work offers a paradigm shift for designing high-performance optoelectronic devices.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500061\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500061\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500061","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究介绍了一种不对称自组装单层(sam)结构((5h -二吲哚[3,2-a:3',2'-c]咔唑-5,10,15-三基)三(丙烷-3,1-二基)三膦酸(3PATAT-C3),旨在推进钙钛矿光电器件的界面工程。分子设计集成了三个膦酸锚定基团,能够与底物牢固结合,提高可持续性。战略性定位的Lewis碱性氧和硫杂原子驱动协同相互作用,通过优化界面接触和表面覆盖来解决传统地对空导弹的局限性。分子的正面取向促进了能量排列(功函数:5.18 eV)和优异的结晶(晶粒尺寸:0.784±0.315 μm)。这些特性共同提高了抗湿性和电荷传输效率。性能指标显示出显着的增强,包括21.74%的功率转换效率,暗电流密度降低(8.93 × 10⁻9 a /cm²),以及1.01 × 10¹³琼斯的射噪声限制探测率。通过应用多桥接策略和可持续化学原理,这项工作为设计高性能光电器件提供了范式转变。
Multi-Bridged Lewis-Functionalized Self-Assembled Monolayers for Enhanced Interfacial Affinity in Perovskite Photoelectric Sensors.
This study introduces an asymmetric self-assembled monolayers (SAMs) architecture, ((5H-Diindolo[3,2-a:3',2'-c]carbazole-5,10,15-triyl)tris(propane-3,1-diyl))triphosphonic acid (3PATAT-C3), designed to advance interfacial engineering in perovskite photoelectric devices. The molecular design integrates three phosphonic acid anchoring groups, enabling robust bonding with the substrate to enhance sustainability. Strategically positioned Lewis basic oxygen and sulfur heteroatoms drive synergistic interactions, addressing the limitations of conventional SAMs by optimizing interfacial contact and surface coverage. The face-on orientation of the molecules promotes energy alignment (work function: 5.18 eV) and superior crystallization (grain size: 0.784±0.315 μm). These features collectively improve moisture resistance and charge transport efficiency. Performance metrics demonstrate significant enhancements, including a power conversion efficiency of 21.74 %, a reduction in dark current density (8.93×10-9 A/cm2), and a shot noise-limited detectivity of 1.01×1013 Jones. By applying multi-bridging strategies and sustainable chemistry principles, this work offers a paradigm shift for designing high-performance optoelectronic devices.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology