异恶唑啉路线合成醛醇在天然产物中的应用进展。

IF 10.2 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pavel Yu. Ushakov , Alexey Yu. Sukhorukov
{"title":"异恶唑啉路线合成醛醇在天然产物中的应用进展。","authors":"Pavel Yu. Ushakov ,&nbsp;Alexey Yu. Sukhorukov","doi":"10.1039/d4np00069b","DOIUrl":null,"url":null,"abstract":"<div><div>Covering: 2000 to 2024</div></div><div><div>The cycloaddition of nitrile oxides with olefins (NOC), followed by reductive cleavage of the resulting isoxazolines, has been widely recognised as a convenient and powerful synthetic strategy for constructing the aldol motif in natural product synthesis. Different modes of NOC (intermolecular, fused and bridged intramolecular) enable the synthesis of diverse isoxazoline products, which can be converted into highly substituted cyclic and acyclic aldol frameworks. This review examines the advances in this field over the past 25 years. More than 50 total syntheses are discussed, encompassing various classes of natural compounds, including macrolides, alkaloids, terpenoids, steroids, pseudosugars, sulfolipids and some others. Moreover, the basic aspects of this methodology are outlined, including methods for the generation of nitrile oxides and isoxazoline ring cleavage, as well as stereochemical models for intramolecular nitrile oxide cycloaddition.</div></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"42 5","pages":"Pages 876-910"},"PeriodicalIF":10.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in the application of the isoxazoline route to aldols in the synthesis of natural products\",\"authors\":\"Pavel Yu. Ushakov ,&nbsp;Alexey Yu. Sukhorukov\",\"doi\":\"10.1039/d4np00069b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Covering: 2000 to 2024</div></div><div><div>The cycloaddition of nitrile oxides with olefins (NOC), followed by reductive cleavage of the resulting isoxazolines, has been widely recognised as a convenient and powerful synthetic strategy for constructing the aldol motif in natural product synthesis. Different modes of NOC (intermolecular, fused and bridged intramolecular) enable the synthesis of diverse isoxazoline products, which can be converted into highly substituted cyclic and acyclic aldol frameworks. This review examines the advances in this field over the past 25 years. More than 50 total syntheses are discussed, encompassing various classes of natural compounds, including macrolides, alkaloids, terpenoids, steroids, pseudosugars, sulfolipids and some others. Moreover, the basic aspects of this methodology are outlined, including methods for the generation of nitrile oxides and isoxazoline ring cleavage, as well as stereochemical models for intramolecular nitrile oxide cycloaddition.</div></div>\",\"PeriodicalId\":94,\"journal\":{\"name\":\"Natural Product Reports\",\"volume\":\"42 5\",\"pages\":\"Pages 876-910\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0265056825000182\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056825000182","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在天然产物合成中,丙烯腈氧化物与烯烃(NOC)的环加成,然后是所得到的异恶唑啉的还原裂解,已被广泛认为是构建醛醇基序的一种方便而有效的合成策略。不同的NOC模式(分子间、熔融和分子内桥接)可以合成不同的异恶唑啉产物,这些产物可以转化为高取代的环和无环醛醇框架。本文综述了过去25年来该领域的研究进展。讨论了50多种全合成方法,包括各种天然化合物,包括大环内酯类、生物碱类、萜类、类固醇、假糖、亚脂类等。此外,概述了该方法的基本方面,包括生成腈氧化物和异恶唑啉环裂解的方法,以及分子内腈氧化物环加成的立体化学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in the application of the isoxazoline route to aldols in the synthesis of natural products
Covering: 2000 to 2024
The cycloaddition of nitrile oxides with olefins (NOC), followed by reductive cleavage of the resulting isoxazolines, has been widely recognised as a convenient and powerful synthetic strategy for constructing the aldol motif in natural product synthesis. Different modes of NOC (intermolecular, fused and bridged intramolecular) enable the synthesis of diverse isoxazoline products, which can be converted into highly substituted cyclic and acyclic aldol frameworks. This review examines the advances in this field over the past 25 years. More than 50 total syntheses are discussed, encompassing various classes of natural compounds, including macrolides, alkaloids, terpenoids, steroids, pseudosugars, sulfolipids and some others. Moreover, the basic aspects of this methodology are outlined, including methods for the generation of nitrile oxides and isoxazoline ring cleavage, as well as stereochemical models for intramolecular nitrile oxide cycloaddition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信