基于生成模型结合实验验证的高性能热电材料反设计。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-04-02 Epub Date: 2025-03-20 DOI:10.1021/acsami.4c19494
Yanwu Long, Chengquan Zhong, Xiaojing Ma, Jingzi Zhang, Honghao Yao, Jiakai Liu, Kailong Hu, Qian Zhang, Xi Lin
{"title":"基于生成模型结合实验验证的高性能热电材料反设计。","authors":"Yanwu Long, Chengquan Zhong, Xiaojing Ma, Jingzi Zhang, Honghao Yao, Jiakai Liu, Kailong Hu, Qian Zhang, Xi Lin","doi":"10.1021/acsami.4c19494","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of inverse design approaches leveraging generative models offers a promising avenue for thermoelectric material design. However, these models heavily depend on diverse training data, and current thermoelectric data sets are limited, primarily encompassing group IV-VI materials operating within moderate temperature ranges. This constraint poses a significant challenge in the pursuit of materials with high thermoelectric figure of merit (<i>zT</i>) through generative modeling. Our study introduces an inverse design model tailored for the constrained thermoelectric materials data set. By augmenting the data with 2000 entries from the experimental literature and incorporating a generative model featuring a diversity loss function and residual network (ResNet) architecture to enhance complexity, our approach has been trained to systematically generate high-<i>zT</i> thermoelectric materials across various temperature ranges. Under predefined high-<i>zT</i> criteria, our deep generative model successfully predicted 100 doped materials with <i>zT</i> values exceeding 1.0. Furthermore, this research analyzes density of states (DOS) plots for the generated materials, identifying 25 unreported previously potential thermoelectric candidates in the material database. Notably, we experimentally validated the synthesis of Mg<sub>3.1</sub>Sb<sub>0.5</sub>Bi<sub>1.497</sub>Te<sub>0.003</sub>, a representative thermoelectric material from the Mg<sub>3</sub>(Sb, Bi)<sub>2</sub> family suitable for room temperature applications. This validation underscores the efficacy of our model in exploring and discovering novel thermoelectric materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"19856-19867"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design of High-Performance Thermoelectric Materials via a Generative Model Combined with Experimental Verification.\",\"authors\":\"Yanwu Long, Chengquan Zhong, Xiaojing Ma, Jingzi Zhang, Honghao Yao, Jiakai Liu, Kailong Hu, Qian Zhang, Xi Lin\",\"doi\":\"10.1021/acsami.4c19494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of inverse design approaches leveraging generative models offers a promising avenue for thermoelectric material design. However, these models heavily depend on diverse training data, and current thermoelectric data sets are limited, primarily encompassing group IV-VI materials operating within moderate temperature ranges. This constraint poses a significant challenge in the pursuit of materials with high thermoelectric figure of merit (<i>zT</i>) through generative modeling. Our study introduces an inverse design model tailored for the constrained thermoelectric materials data set. By augmenting the data with 2000 entries from the experimental literature and incorporating a generative model featuring a diversity loss function and residual network (ResNet) architecture to enhance complexity, our approach has been trained to systematically generate high-<i>zT</i> thermoelectric materials across various temperature ranges. Under predefined high-<i>zT</i> criteria, our deep generative model successfully predicted 100 doped materials with <i>zT</i> values exceeding 1.0. Furthermore, this research analyzes density of states (DOS) plots for the generated materials, identifying 25 unreported previously potential thermoelectric candidates in the material database. Notably, we experimentally validated the synthesis of Mg<sub>3.1</sub>Sb<sub>0.5</sub>Bi<sub>1.497</sub>Te<sub>0.003</sub>, a representative thermoelectric material from the Mg<sub>3</sub>(Sb, Bi)<sub>2</sub> family suitable for room temperature applications. This validation underscores the efficacy of our model in exploring and discovering novel thermoelectric materials.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"19856-19867\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c19494\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19494","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用生成模型的逆设计方法的出现为热电材料设计提供了一条有前途的途径。然而,这些模型严重依赖于不同的训练数据,而目前的热电数据集是有限的,主要包括在中等温度范围内工作的IV-VI组材料。这一限制对通过生成建模追求具有高热电性能值(zT)的材料提出了重大挑战。我们的研究引入了一个为约束热电材料数据集量身定制的逆设计模型。通过从实验文献中增加2000个条目的数据,并结合具有多样性损失函数和残余网络(ResNet)架构的生成模型来提高复杂性,我们的方法已经被训练成在不同温度范围内系统地生成高zt热电材料。在预定义的高zT标准下,我们的深度生成模型成功预测了100种zT值超过1.0的掺杂材料。此外,本研究分析了生成材料的状态密度(DOS)图,在材料数据库中确定了25种以前未报道的潜在热电候选材料。值得注意的是,我们通过实验验证了Mg3.1Sb0.5Bi1.497Te0.003的合成,这是一种适合室温应用的Mg3(Sb, Bi)2家族的代表性热电材料。这一验证强调了我们的模型在探索和发现新型热电材料方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inverse Design of High-Performance Thermoelectric Materials via a Generative Model Combined with Experimental Verification.

Inverse Design of High-Performance Thermoelectric Materials via a Generative Model Combined with Experimental Verification.

The emergence of inverse design approaches leveraging generative models offers a promising avenue for thermoelectric material design. However, these models heavily depend on diverse training data, and current thermoelectric data sets are limited, primarily encompassing group IV-VI materials operating within moderate temperature ranges. This constraint poses a significant challenge in the pursuit of materials with high thermoelectric figure of merit (zT) through generative modeling. Our study introduces an inverse design model tailored for the constrained thermoelectric materials data set. By augmenting the data with 2000 entries from the experimental literature and incorporating a generative model featuring a diversity loss function and residual network (ResNet) architecture to enhance complexity, our approach has been trained to systematically generate high-zT thermoelectric materials across various temperature ranges. Under predefined high-zT criteria, our deep generative model successfully predicted 100 doped materials with zT values exceeding 1.0. Furthermore, this research analyzes density of states (DOS) plots for the generated materials, identifying 25 unreported previously potential thermoelectric candidates in the material database. Notably, we experimentally validated the synthesis of Mg3.1Sb0.5Bi1.497Te0.003, a representative thermoelectric material from the Mg3(Sb, Bi)2 family suitable for room temperature applications. This validation underscores the efficacy of our model in exploring and discovering novel thermoelectric materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信