David M. Benoit, Daniel P. Zielinski, Reid G. Swanson, Donald A. Jackson, Robert L. McLaughlin, Theodore R. Castro-Santos, R. Andrew Goodwin, Thomas C. Pratt, Andrew M. Muir
{"title":"多物种选择鱼类通道可分类行会设计","authors":"David M. Benoit, Daniel P. Zielinski, Reid G. Swanson, Donald A. Jackson, Robert L. McLaughlin, Theodore R. Castro-Santos, R. Andrew Goodwin, Thomas C. Pratt, Andrew M. Muir","doi":"10.1111/faf.12888","DOIUrl":null,"url":null,"abstract":"<p>The importance of connectivity for freshwater organisms is widely recognised, yet in-stream barriers associated with population declines and increased risk of extinction remain globally ubiquitous. Despite their negative consequences, these barriers can protect aquatic communities by limiting the spread of invasive species, leading to conflicting management goals in some regions. Selective fish passage is a solution for the conflicting goals of passing native, desirable species while restricting the spread of invasives. Approaches that can target groups of species sharing similar attributes (i.e. guilds) are likely to be more efficient than those that target species individually, particularly in taxonomically diverse systems. We explored the guild structure of 220 Great Lakes freshwater fishes based on morphological, phenological, physiological and behavioural attributes associated with passage and movement. We identified five distinct guilds as well as the attributes most important for defining these groupings: maximum total length, trophic level, relative eye size, spawning temperature, spawning season, presence/absence of ampullary electroreceptors and the presence/absence of hearing specialisations. The approaches outlined in this work can be generalised to enhance selective fish passage in aquatic ecosystems worldwide.</p>","PeriodicalId":169,"journal":{"name":"Fish and Fisheries","volume":"26 3","pages":"414-424"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/faf.12888","citationCount":"0","resultStr":"{\"title\":\"Designing Sortable Guilds for Multispecies Selective Fish Passage\",\"authors\":\"David M. Benoit, Daniel P. Zielinski, Reid G. Swanson, Donald A. Jackson, Robert L. McLaughlin, Theodore R. Castro-Santos, R. Andrew Goodwin, Thomas C. Pratt, Andrew M. Muir\",\"doi\":\"10.1111/faf.12888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The importance of connectivity for freshwater organisms is widely recognised, yet in-stream barriers associated with population declines and increased risk of extinction remain globally ubiquitous. Despite their negative consequences, these barriers can protect aquatic communities by limiting the spread of invasive species, leading to conflicting management goals in some regions. Selective fish passage is a solution for the conflicting goals of passing native, desirable species while restricting the spread of invasives. Approaches that can target groups of species sharing similar attributes (i.e. guilds) are likely to be more efficient than those that target species individually, particularly in taxonomically diverse systems. We explored the guild structure of 220 Great Lakes freshwater fishes based on morphological, phenological, physiological and behavioural attributes associated with passage and movement. We identified five distinct guilds as well as the attributes most important for defining these groupings: maximum total length, trophic level, relative eye size, spawning temperature, spawning season, presence/absence of ampullary electroreceptors and the presence/absence of hearing specialisations. The approaches outlined in this work can be generalised to enhance selective fish passage in aquatic ecosystems worldwide.</p>\",\"PeriodicalId\":169,\"journal\":{\"name\":\"Fish and Fisheries\",\"volume\":\"26 3\",\"pages\":\"414-424\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/faf.12888\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and Fisheries\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/faf.12888\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/faf.12888","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Designing Sortable Guilds for Multispecies Selective Fish Passage
The importance of connectivity for freshwater organisms is widely recognised, yet in-stream barriers associated with population declines and increased risk of extinction remain globally ubiquitous. Despite their negative consequences, these barriers can protect aquatic communities by limiting the spread of invasive species, leading to conflicting management goals in some regions. Selective fish passage is a solution for the conflicting goals of passing native, desirable species while restricting the spread of invasives. Approaches that can target groups of species sharing similar attributes (i.e. guilds) are likely to be more efficient than those that target species individually, particularly in taxonomically diverse systems. We explored the guild structure of 220 Great Lakes freshwater fishes based on morphological, phenological, physiological and behavioural attributes associated with passage and movement. We identified five distinct guilds as well as the attributes most important for defining these groupings: maximum total length, trophic level, relative eye size, spawning temperature, spawning season, presence/absence of ampullary electroreceptors and the presence/absence of hearing specialisations. The approaches outlined in this work can be generalised to enhance selective fish passage in aquatic ecosystems worldwide.
期刊介绍:
Fish and Fisheries adopts a broad, interdisciplinary approach to the subject of fish biology and fisheries. It draws contributions in the form of major synoptic papers and syntheses or meta-analyses that lay out new approaches, re-examine existing findings, methods or theory, and discuss papers and commentaries from diverse areas. Focal areas include fish palaeontology, molecular biology and ecology, genetics, biochemistry, physiology, ecology, behaviour, evolutionary studies, conservation, assessment, population dynamics, mathematical modelling, ecosystem analysis and the social, economic and policy aspects of fisheries where they are grounded in a scientific approach. A paper in Fish and Fisheries must draw upon all key elements of the existing literature on a topic, normally have a broad geographic and/or taxonomic scope, and provide general points which make it compelling to a wide range of readers whatever their geographical location. So, in short, we aim to publish articles that make syntheses of old or synoptic, long-term or spatially widespread data, introduce or consolidate fresh concepts or theory, or, in the Ghoti section, briefly justify preliminary, new synoptic ideas. Please note that authors of submissions not meeting this mandate will be directed to the appropriate primary literature.