微生物光合作用减轻了气候变暖下北部泥炭地的碳损失

IF 29.6 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Samuel Hamard, Sophie Planchenault, Romain Walcker, Anna Sytiuk, Marie Le Geay, Martin Küttim, Ellen Dorrepaal, Mariusz Lamentowicz, Owen L. Petchey, Bjorn J. M. Robroek, Eeva-Stiina Tuittila, Maialen Barret, Régis Céréghino, Frédéric Delarue, Jessica Ferriol, Tristan Lafont Rapnouil, Joséphine Leflaive, Gaël Le Roux, Vincent E. J. Jassey
{"title":"微生物光合作用减轻了气候变暖下北部泥炭地的碳损失","authors":"Samuel Hamard, Sophie Planchenault, Romain Walcker, Anna Sytiuk, Marie Le Geay, Martin Küttim, Ellen Dorrepaal, Mariusz Lamentowicz, Owen L. Petchey, Bjorn J. M. Robroek, Eeva-Stiina Tuittila, Maialen Barret, Régis Céréghino, Frédéric Delarue, Jessica Ferriol, Tristan Lafont Rapnouil, Joséphine Leflaive, Gaël Le Roux, Vincent E. J. Jassey","doi":"10.1038/s41558-025-02271-8","DOIUrl":null,"url":null,"abstract":"The future of the northern peatland carbon (C) sink is uncertain as the effects of warming on microbial metabolisms are unclear. While increased microbial CO2 emissions are expected under warming, the response of microbial photosynthesis remains unknown, complicating predictions of net microbial effects on peatland carbon emissions. Here, using a continental-scale experimental study, we show that warming amplifies microbial photosynthesis by 3.4 mgC m−2 h−1 per 1 °C increase. By 2100, this increase translates to a gain of 51.1 Tg of carbon per year from the northern peatland area under the pessimistic SSP 5-8.5 climatic change scenario, offsetting ~14% of projected heterotrophic CO2 emissions in northern peatlands. By linking field and microcosm experiments, we further show that enhanced microbial photosynthesis accelerates peatland CO2 uptake as photosynthetic microbial-C subsidies stimulate nutrient mineralization. These results underscore the importance of photosynthetic microbes for mitigating carbon emissions and supporting long-term carbon storage in peatlands. The authors use experimental and modelling approaches to understand the response of microbial photosynthesis to peatland warming. They show that warming amplifies microbial photosynthesis, which could offset rising CO2 emissions from northern peatlands by 6.0–13.7% in 2100 (SSP 2-4.5–SSP 5-8.5).","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 4","pages":"436-443"},"PeriodicalIF":29.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial photosynthesis mitigates carbon loss from northern peatlands under warming\",\"authors\":\"Samuel Hamard, Sophie Planchenault, Romain Walcker, Anna Sytiuk, Marie Le Geay, Martin Küttim, Ellen Dorrepaal, Mariusz Lamentowicz, Owen L. Petchey, Bjorn J. M. Robroek, Eeva-Stiina Tuittila, Maialen Barret, Régis Céréghino, Frédéric Delarue, Jessica Ferriol, Tristan Lafont Rapnouil, Joséphine Leflaive, Gaël Le Roux, Vincent E. J. Jassey\",\"doi\":\"10.1038/s41558-025-02271-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The future of the northern peatland carbon (C) sink is uncertain as the effects of warming on microbial metabolisms are unclear. While increased microbial CO2 emissions are expected under warming, the response of microbial photosynthesis remains unknown, complicating predictions of net microbial effects on peatland carbon emissions. Here, using a continental-scale experimental study, we show that warming amplifies microbial photosynthesis by 3.4 mgC m−2 h−1 per 1 °C increase. By 2100, this increase translates to a gain of 51.1 Tg of carbon per year from the northern peatland area under the pessimistic SSP 5-8.5 climatic change scenario, offsetting ~14% of projected heterotrophic CO2 emissions in northern peatlands. By linking field and microcosm experiments, we further show that enhanced microbial photosynthesis accelerates peatland CO2 uptake as photosynthetic microbial-C subsidies stimulate nutrient mineralization. These results underscore the importance of photosynthetic microbes for mitigating carbon emissions and supporting long-term carbon storage in peatlands. The authors use experimental and modelling approaches to understand the response of microbial photosynthesis to peatland warming. They show that warming amplifies microbial photosynthesis, which could offset rising CO2 emissions from northern peatlands by 6.0–13.7% in 2100 (SSP 2-4.5–SSP 5-8.5).\",\"PeriodicalId\":18974,\"journal\":{\"name\":\"Nature Climate Change\",\"volume\":\"15 4\",\"pages\":\"436-443\"},\"PeriodicalIF\":29.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Climate Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41558-025-02271-8\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-025-02271-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于气候变暖对微生物代谢的影响尚不清楚,北部泥炭地碳汇的未来尚不确定。虽然预计在变暖的情况下微生物的二氧化碳排放量会增加,但微生物光合作用的响应仍然未知,这使预测泥炭地碳排放的净微生物效应变得复杂。通过大陆尺度的实验研究,研究人员发现,温度每升高1°C,微生物的光合作用就会增加3.4 mgC m−2 h−1。到2100年,在悲观的SSP 5-8.5气候变化情景下,这一增加转化为每年从北部泥炭地地区增加51.1 Tg的碳,抵消了北部泥炭地预计异养型二氧化碳排放量的约14%。通过田间和微观实验的结合,我们进一步表明,微生物光合作用的增强加速了泥炭地二氧化碳的吸收,因为光合微生物c补贴刺激了养分矿化。这些结果强调了光合微生物在减少碳排放和支持泥炭地长期碳储存方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microbial photosynthesis mitigates carbon loss from northern peatlands under warming

Microbial photosynthesis mitigates carbon loss from northern peatlands under warming

Microbial photosynthesis mitigates carbon loss from northern peatlands under warming
The future of the northern peatland carbon (C) sink is uncertain as the effects of warming on microbial metabolisms are unclear. While increased microbial CO2 emissions are expected under warming, the response of microbial photosynthesis remains unknown, complicating predictions of net microbial effects on peatland carbon emissions. Here, using a continental-scale experimental study, we show that warming amplifies microbial photosynthesis by 3.4 mgC m−2 h−1 per 1 °C increase. By 2100, this increase translates to a gain of 51.1 Tg of carbon per year from the northern peatland area under the pessimistic SSP 5-8.5 climatic change scenario, offsetting ~14% of projected heterotrophic CO2 emissions in northern peatlands. By linking field and microcosm experiments, we further show that enhanced microbial photosynthesis accelerates peatland CO2 uptake as photosynthetic microbial-C subsidies stimulate nutrient mineralization. These results underscore the importance of photosynthetic microbes for mitigating carbon emissions and supporting long-term carbon storage in peatlands. The authors use experimental and modelling approaches to understand the response of microbial photosynthesis to peatland warming. They show that warming amplifies microbial photosynthesis, which could offset rising CO2 emissions from northern peatlands by 6.0–13.7% in 2100 (SSP 2-4.5–SSP 5-8.5).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Climate Change
Nature Climate Change ENVIRONMENTAL SCIENCES-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
40.30
自引率
1.60%
发文量
267
审稿时长
4-8 weeks
期刊介绍: Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large. The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests. Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles. Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信