有机质介导的石灰化酸性土壤碱度沥滤受溶解有机碳吸附和土壤结构的影响

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE
Soil Pub Date : 2025-03-20 DOI:10.5194/egusphere-2025-1012
Hannah Van Ryckel, Lynn Van Aelst, Toon van Dael, Erik Smolders
{"title":"有机质介导的石灰化酸性土壤碱度沥滤受溶解有机碳吸附和土壤结构的影响","authors":"Hannah Van Ryckel, Lynn Van Aelst, Toon van Dael, Erik Smolders","doi":"10.5194/egusphere-2025-1012","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Subsurface soil acidity severely limits crop growth and is challenging to adjust by surface liming. There have been several proposals for subsurface liming using the combination of lime and an organic amendment, as organic anions may migrate deeper in acid subsoil than carbonates. This study aimed to identify mechanisms of subsurface liming, postulating that it is hindered by dissolved organic carbon (DOC) adsorption but enhanced in structured compared to sieved soils due to preferential flow in macropores. Column leaching experiments were set up using three sieved acid soils with contrasting properties, of which one was additionally sampled as undisturbed soil cores. The upper layer of each soil was treated with lime, compost, or a combination of both, in addition to an untreated control and columns were leached with artificial rainwater. Deeper subsurface liming in the lime+compost treatment than in the lime treatment was detected in only one of the three soils. The effect of compost on the migration of alkalinity was explained by differences in DOC sorption among soils, the lowest sorption leading to deepest subsurface liming. Imaging of in situ pH using a planar optode showed evidence of preferential alkalinity flow in the structured soil, however destructive sampling of bulk soil layers did not confirm this. We conclude that combining lime with an organic amendment can effectively ameliorate subsoil acidity but this requires weakly DOC adsorbing subsoils. The role of soil structure on this process needs to be corroborated with plant responses to identify benefits of liming the macropores.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"92 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic matter-mediated leaching of alkalinity in limed acid soils is affected by dissolved organic carbon adsorption and soil structure\",\"authors\":\"Hannah Van Ryckel, Lynn Van Aelst, Toon van Dael, Erik Smolders\",\"doi\":\"10.5194/egusphere-2025-1012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Subsurface soil acidity severely limits crop growth and is challenging to adjust by surface liming. There have been several proposals for subsurface liming using the combination of lime and an organic amendment, as organic anions may migrate deeper in acid subsoil than carbonates. This study aimed to identify mechanisms of subsurface liming, postulating that it is hindered by dissolved organic carbon (DOC) adsorption but enhanced in structured compared to sieved soils due to preferential flow in macropores. Column leaching experiments were set up using three sieved acid soils with contrasting properties, of which one was additionally sampled as undisturbed soil cores. The upper layer of each soil was treated with lime, compost, or a combination of both, in addition to an untreated control and columns were leached with artificial rainwater. Deeper subsurface liming in the lime+compost treatment than in the lime treatment was detected in only one of the three soils. The effect of compost on the migration of alkalinity was explained by differences in DOC sorption among soils, the lowest sorption leading to deepest subsurface liming. Imaging of in situ pH using a planar optode showed evidence of preferential alkalinity flow in the structured soil, however destructive sampling of bulk soil layers did not confirm this. We conclude that combining lime with an organic amendment can effectively ameliorate subsoil acidity but this requires weakly DOC adsorbing subsoils. The role of soil structure on this process needs to be corroborated with plant responses to identify benefits of liming the macropores.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2025-1012\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-1012","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要。地下土壤酸度严重限制了作物生长,很难通过地表石灰进行调节。由于有机阴离子比碳酸盐更容易在酸性底土中迁移,因此有几种建议使用石灰和有机改良剂的组合进行地下石灰化。本研究旨在确定地下石灰化的机制,假设其受到溶解有机碳(DOC)吸附的阻碍,但由于大孔中的优先流动,与筛分土壤相比,在结构化土壤中增强。采用三种不同性质的酸性土壤进行了柱淋试验,其中一种为原状土芯。除了未经处理的对照外,每个土壤的上层都用石灰、堆肥或两者的组合处理,并用人工雨水淋滤柱。在三种土壤中,只有一种土壤的石灰+堆肥处理的地下石灰化程度高于石灰处理。堆肥对碱度迁移的影响可以通过土壤对DOC的吸收差异来解释,土壤对DOC的吸收量越低,土壤下石灰化程度越深。使用平面光电成像的原位pH值显示了结构性土壤中优先碱度流动的证据,然而对大块土层的破坏性采样并没有证实这一点。我们得出结论,石灰与有机改良剂结合可以有效改善底土酸度,但这需要弱DOC吸附底土。土壤结构在这一过程中的作用需要与植物的反应相证实,以确定限制大孔的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Organic matter-mediated leaching of alkalinity in limed acid soils is affected by dissolved organic carbon adsorption and soil structure
Abstract. Subsurface soil acidity severely limits crop growth and is challenging to adjust by surface liming. There have been several proposals for subsurface liming using the combination of lime and an organic amendment, as organic anions may migrate deeper in acid subsoil than carbonates. This study aimed to identify mechanisms of subsurface liming, postulating that it is hindered by dissolved organic carbon (DOC) adsorption but enhanced in structured compared to sieved soils due to preferential flow in macropores. Column leaching experiments were set up using three sieved acid soils with contrasting properties, of which one was additionally sampled as undisturbed soil cores. The upper layer of each soil was treated with lime, compost, or a combination of both, in addition to an untreated control and columns were leached with artificial rainwater. Deeper subsurface liming in the lime+compost treatment than in the lime treatment was detected in only one of the three soils. The effect of compost on the migration of alkalinity was explained by differences in DOC sorption among soils, the lowest sorption leading to deepest subsurface liming. Imaging of in situ pH using a planar optode showed evidence of preferential alkalinity flow in the structured soil, however destructive sampling of bulk soil layers did not confirm this. We conclude that combining lime with an organic amendment can effectively ameliorate subsoil acidity but this requires weakly DOC adsorbing subsoils. The role of soil structure on this process needs to be corroborated with plant responses to identify benefits of liming the macropores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信