{"title":"高压固态锂金属电池用新型取向脂肪族酮基液晶聚合物电解质","authors":"Yuchen Jiang, Lu Liu, Yu Liu, Jiazhu Guan, Honghao Wang, Meng Zhang, Lin Chen, Yong Cao, Rongzheng Li, Yajuan Zhou, Qinghui Zeng, Zhenfeng Li, Wenping Liu, Xiaoyi Li, Liaoyun Zhang","doi":"10.1002/adfm.202502613","DOIUrl":null,"url":null,"abstract":"<p>Low room temperature ionic conductivity and interfacial incompatibility severely hinder the further application of polymer electrolytes in lithium metal batteries. Here, a novel shear-oriented (SO) aliphatic ketone-carbonyl-based liquid crystal composite solid polymer electrolyte (FL<sub>7</sub>M<sub>3</sub>@CSPE<sub>SO</sub>) is prepared by in situ thermal-polymerization of liquid crystal monomer (FPZ-LC, FL) and <i>N, N'</i>-Methylenebisacrylamide (MBA, M) on cellulose nanofiber (CNF) in the presence of triethylene-glycol-dimethyl-ether (G<sub>3</sub>) and lithium salt (lithium bis(trifluoromethanesulphonyl)imide, LiTFSI). The high polarity of keto-carbonyl groups improves the dissociation ability of lithium salt. The highly oriented liquid crystals provide rapid ion transport channels. Thus, the FL<sub>7</sub>M<sub>3</sub>@CSPE<sub>SO</sub> achieves ionic conductivity of 10<sup>−4</sup> S cm<sup>−1</sup> and a lithium-ion transference number (t<sub>Li+</sub>) of 0.52 at 30 °C. Besides, in situ formed stable interface layer effectively inhibits the growth of lithium dendrites. The assembled Li/FL<sub>7</sub>M<sub>3</sub>@CSPE<sub>SO</sub>/Li cells operate stably over 5500 h at 0.05 mA cm<sup>−2</sup> (30 °C). Impressively, the assembled Li/FL<sub>7</sub>M<sub>3</sub>@CSPE<sub>SO</sub>/NCM811 cells exhibits a long-term cycle over 1200 h with a capacity retention of 92% under 0.05 C and 4.4 V (−5 °C). This work not only highlights the advantages of the aliphatic keto-carbonyl groups and highly oriented liquid crystal in improving ion transport capacity, but also provides a design strategy for advanced polymer electrolytes suitable for lower temperature and high-voltage solid-state lithium batteries.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 33","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Orientation Aliphatic Ketone-Based Liquid Crystal Polymer Electrolyte for High-Voltage Solid-State Lithium Metal Batteries\",\"authors\":\"Yuchen Jiang, Lu Liu, Yu Liu, Jiazhu Guan, Honghao Wang, Meng Zhang, Lin Chen, Yong Cao, Rongzheng Li, Yajuan Zhou, Qinghui Zeng, Zhenfeng Li, Wenping Liu, Xiaoyi Li, Liaoyun Zhang\",\"doi\":\"10.1002/adfm.202502613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low room temperature ionic conductivity and interfacial incompatibility severely hinder the further application of polymer electrolytes in lithium metal batteries. Here, a novel shear-oriented (SO) aliphatic ketone-carbonyl-based liquid crystal composite solid polymer electrolyte (FL<sub>7</sub>M<sub>3</sub>@CSPE<sub>SO</sub>) is prepared by in situ thermal-polymerization of liquid crystal monomer (FPZ-LC, FL) and <i>N, N'</i>-Methylenebisacrylamide (MBA, M) on cellulose nanofiber (CNF) in the presence of triethylene-glycol-dimethyl-ether (G<sub>3</sub>) and lithium salt (lithium bis(trifluoromethanesulphonyl)imide, LiTFSI). The high polarity of keto-carbonyl groups improves the dissociation ability of lithium salt. The highly oriented liquid crystals provide rapid ion transport channels. Thus, the FL<sub>7</sub>M<sub>3</sub>@CSPE<sub>SO</sub> achieves ionic conductivity of 10<sup>−4</sup> S cm<sup>−1</sup> and a lithium-ion transference number (t<sub>Li+</sub>) of 0.52 at 30 °C. Besides, in situ formed stable interface layer effectively inhibits the growth of lithium dendrites. The assembled Li/FL<sub>7</sub>M<sub>3</sub>@CSPE<sub>SO</sub>/Li cells operate stably over 5500 h at 0.05 mA cm<sup>−2</sup> (30 °C). Impressively, the assembled Li/FL<sub>7</sub>M<sub>3</sub>@CSPE<sub>SO</sub>/NCM811 cells exhibits a long-term cycle over 1200 h with a capacity retention of 92% under 0.05 C and 4.4 V (−5 °C). This work not only highlights the advantages of the aliphatic keto-carbonyl groups and highly oriented liquid crystal in improving ion transport capacity, but also provides a design strategy for advanced polymer electrolytes suitable for lower temperature and high-voltage solid-state lithium batteries.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 33\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202502613\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202502613","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
低温离子电导率低和界面不相容性严重阻碍了聚合物电解质在锂金属电池中的进一步应用。本文在三乙基-乙二醇-二甲醚(G3)和锂盐(锂二(三氟甲烷磺酸基)亚胺(LiTFSI)存在下,将液晶单体(FPZ-LC, FL)和N, N'-亚甲基双丙烯酰胺(MBA, M)在纤维素纳米纤维(CNF)上原位热聚合制备了一种新型剪切定向(SO)脂肪族酮-羰基液晶复合固体聚合物电解质(FL7M3@CSPESO)。酮羰基的高极性提高了锂盐的解离能力。高取向液晶提供了快速离子传输通道。因此,FL7M3@CSPESO在30°C时离子电导率为10−4 S cm−1,锂离子转移数(tLi+)为0.52。此外,原位形成的稳定界面层有效抑制了锂枝晶的生长。组装的Li/FL7M3@CSPESO/Li电池在0.05 mA cm−2(30°C)下稳定工作5500小时以上。令人印象深刻的是,组装的Li/FL7M3@CSPESO/NCM811电池在0.05 C和4.4 V(- 5°C)下的长期循环超过1200 h,容量保持率为92%。这项工作不仅突出了脂肪族酮羰基和高取向液晶在提高离子传输能力方面的优势,而且为适用于低温高压固态锂电池的先进聚合物电解质的设计提供了一种策略。
A Novel Orientation Aliphatic Ketone-Based Liquid Crystal Polymer Electrolyte for High-Voltage Solid-State Lithium Metal Batteries
Low room temperature ionic conductivity and interfacial incompatibility severely hinder the further application of polymer electrolytes in lithium metal batteries. Here, a novel shear-oriented (SO) aliphatic ketone-carbonyl-based liquid crystal composite solid polymer electrolyte (FL7M3@CSPESO) is prepared by in situ thermal-polymerization of liquid crystal monomer (FPZ-LC, FL) and N, N'-Methylenebisacrylamide (MBA, M) on cellulose nanofiber (CNF) in the presence of triethylene-glycol-dimethyl-ether (G3) and lithium salt (lithium bis(trifluoromethanesulphonyl)imide, LiTFSI). The high polarity of keto-carbonyl groups improves the dissociation ability of lithium salt. The highly oriented liquid crystals provide rapid ion transport channels. Thus, the FL7M3@CSPESO achieves ionic conductivity of 10−4 S cm−1 and a lithium-ion transference number (tLi+) of 0.52 at 30 °C. Besides, in situ formed stable interface layer effectively inhibits the growth of lithium dendrites. The assembled Li/FL7M3@CSPESO/Li cells operate stably over 5500 h at 0.05 mA cm−2 (30 °C). Impressively, the assembled Li/FL7M3@CSPESO/NCM811 cells exhibits a long-term cycle over 1200 h with a capacity retention of 92% under 0.05 C and 4.4 V (−5 °C). This work not only highlights the advantages of the aliphatic keto-carbonyl groups and highly oriented liquid crystal in improving ion transport capacity, but also provides a design strategy for advanced polymer electrolytes suitable for lower temperature and high-voltage solid-state lithium batteries.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.