高效高选择性H2O2压电合成的P-P杂化锑单原子锚定共价有机框架

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yimu Jiao, Qiyu Lian, Zhi Li, Muke Lin, Dingren Ma, Zhuoyun Tang, Dehua Xia, Mingshan Zhu
{"title":"高效高选择性H2O2压电合成的P-P杂化锑单原子锚定共价有机框架","authors":"Yimu Jiao,&nbsp;Qiyu Lian,&nbsp;Zhi Li,&nbsp;Muke Lin,&nbsp;Dingren Ma,&nbsp;Zhuoyun Tang,&nbsp;Dehua Xia,&nbsp;Mingshan Zhu","doi":"10.1002/adfm.202500501","DOIUrl":null,"url":null,"abstract":"<p>The <i>p</i> orbital electrons in main-group metals are generally underrated in the catalytic activity. Herein, an antimony (Sb) single-atom bipyridine-based covalent organic framework (SASb-TpBpy-COF) with the Sb─N coordination is successfully synthesized via 5p-2p orbitals hybridizarion for accomplishing the highly selective piezosynthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) by the non-radical oxygen reduction reaction (ORR). Notably, the synthesized SASb-TpBpy-COF achieved an impressive H<sub>2</sub>O<sub>2</sub> piezosynthesis yield of 1500.58 µmol g<sup>−1</sup> h<sup>−1</sup>, which is up to more than 7-times higher than the reported catalysts. Moreover, the characterization results confirmed that the 5p-2p orbitals hybrid Sb single-atom can intrinsically drive the local polarization level, charge migration dynamics, electron-hole pairs separation, and affinity toward O<sub>2</sub>, consequently enhancing the piezoactivity and selective Pauling-type O<sub>2</sub> adsorption. Besides, experimental results clarified that the fast H<sub>2</sub>O<sub>2</sub> piezosynthesis is selectively dominated by the non-radical ORR. Furthermore, the dynamic Sb-OOH* intermediate is directly detected, proving the selective Pauling-type O<sub>2</sub> adsorption on the Sb single-atom sites. Moreover, this system can achieve an in situ degradation efficiency of over 80% for various emerging pollutants even in the real water samples. Conclusively, this study broadens the fundamental understanding for the fast H<sub>2</sub>O<sub>2</sub> piezosynthesis and provides a highly potential candidate technology for in situ water purification.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 34","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P-P Hybrids Antimony Single-Atom Anchored Covalent Organic Framework for Efficient High-Selectivity H2O2 Piezosynthesis\",\"authors\":\"Yimu Jiao,&nbsp;Qiyu Lian,&nbsp;Zhi Li,&nbsp;Muke Lin,&nbsp;Dingren Ma,&nbsp;Zhuoyun Tang,&nbsp;Dehua Xia,&nbsp;Mingshan Zhu\",\"doi\":\"10.1002/adfm.202500501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>p</i> orbital electrons in main-group metals are generally underrated in the catalytic activity. Herein, an antimony (Sb) single-atom bipyridine-based covalent organic framework (SASb-TpBpy-COF) with the Sb─N coordination is successfully synthesized via 5p-2p orbitals hybridizarion for accomplishing the highly selective piezosynthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) by the non-radical oxygen reduction reaction (ORR). Notably, the synthesized SASb-TpBpy-COF achieved an impressive H<sub>2</sub>O<sub>2</sub> piezosynthesis yield of 1500.58 µmol g<sup>−1</sup> h<sup>−1</sup>, which is up to more than 7-times higher than the reported catalysts. Moreover, the characterization results confirmed that the 5p-2p orbitals hybrid Sb single-atom can intrinsically drive the local polarization level, charge migration dynamics, electron-hole pairs separation, and affinity toward O<sub>2</sub>, consequently enhancing the piezoactivity and selective Pauling-type O<sub>2</sub> adsorption. Besides, experimental results clarified that the fast H<sub>2</sub>O<sub>2</sub> piezosynthesis is selectively dominated by the non-radical ORR. Furthermore, the dynamic Sb-OOH* intermediate is directly detected, proving the selective Pauling-type O<sub>2</sub> adsorption on the Sb single-atom sites. Moreover, this system can achieve an in situ degradation efficiency of over 80% for various emerging pollutants even in the real water samples. Conclusively, this study broadens the fundamental understanding for the fast H<sub>2</sub>O<sub>2</sub> piezosynthesis and provides a highly potential candidate technology for in situ water purification.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 34\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500501\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500501","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

主族金属的p轨道电子在催化活性中通常被低估。本文通过5p-2p轨道杂化,成功合成了Sb─N配位的锑(Sb)单原子联吡啶基共价有机骨架(SASb-TpBpy-COF),实现了非自由基氧还原反应(ORR)对过氧化氢(H2O2)的高选择性压合成。值得注意的是,合成的SASb-TpBpy-COF实现了令人印象深刻的H2O2压合成产率,达到1500.58µmol g−1 h−1,比报道的催化剂高出7倍以上。此外,表征结果证实了5p-2p轨道杂化Sb单原子可以内在地驱动局部极化水平、电荷迁移动力学、电子-空穴对分离和对O2的亲和力,从而增强了压电活性和选择性pauling型O2吸附。此外,实验结果表明,快速H2O2的压合成是选择性地由非自由基ORR主导的。此外,直接检测到动态的Sb- ooh *中间体,证明了Sb单原子位点对O2的选择性pauling型吸附。此外,即使在真实的水样中,该系统对各种新出现的污染物也能达到80%以上的原位降解效率。最后,该研究拓宽了对快速H2O2压电合成的基本认识,并为原位水净化提供了一种极具潜力的候选技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

P-P Hybrids Antimony Single-Atom Anchored Covalent Organic Framework for Efficient High-Selectivity H2O2 Piezosynthesis

P-P Hybrids Antimony Single-Atom Anchored Covalent Organic Framework for Efficient High-Selectivity H2O2 Piezosynthesis

P-P Hybrids Antimony Single-Atom Anchored Covalent Organic Framework for Efficient High-Selectivity H2O2 Piezosynthesis

The p orbital electrons in main-group metals are generally underrated in the catalytic activity. Herein, an antimony (Sb) single-atom bipyridine-based covalent organic framework (SASb-TpBpy-COF) with the Sb─N coordination is successfully synthesized via 5p-2p orbitals hybridizarion for accomplishing the highly selective piezosynthesis of hydrogen peroxide (H2O2) by the non-radical oxygen reduction reaction (ORR). Notably, the synthesized SASb-TpBpy-COF achieved an impressive H2O2 piezosynthesis yield of 1500.58 µmol g−1 h−1, which is up to more than 7-times higher than the reported catalysts. Moreover, the characterization results confirmed that the 5p-2p orbitals hybrid Sb single-atom can intrinsically drive the local polarization level, charge migration dynamics, electron-hole pairs separation, and affinity toward O2, consequently enhancing the piezoactivity and selective Pauling-type O2 adsorption. Besides, experimental results clarified that the fast H2O2 piezosynthesis is selectively dominated by the non-radical ORR. Furthermore, the dynamic Sb-OOH* intermediate is directly detected, proving the selective Pauling-type O2 adsorption on the Sb single-atom sites. Moreover, this system can achieve an in situ degradation efficiency of over 80% for various emerging pollutants even in the real water samples. Conclusively, this study broadens the fundamental understanding for the fast H2O2 piezosynthesis and provides a highly potential candidate technology for in situ water purification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信