晶体-非晶相和氧空位协同调节钒电子态释放锌离子存储性能

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingyu Sun, Li Zhang, Fengbo Li, Fajun Yang, Meiyu Liu, Shaobin Li, Deqing Zhang
{"title":"晶体-非晶相和氧空位协同调节钒电子态释放锌离子存储性能","authors":"Jingyu Sun,&nbsp;Li Zhang,&nbsp;Fengbo Li,&nbsp;Fajun Yang,&nbsp;Meiyu Liu,&nbsp;Shaobin Li,&nbsp;Deqing Zhang","doi":"10.1002/adfm.202501181","DOIUrl":null,"url":null,"abstract":"<p>Zinc-ion capacitors (ZICs) are emerging as a compelling choice for energy storage in future, promising high power and energy densities coupled with eco-friendly characteristics. This work presents a novel approach to enhance the performance of ZICs by employing a one-step solvothermal synthesis to growth V-MOF on the surface of V<sub>2</sub>CT<sub>X</sub>-MXene, followed by annealing to fabricate a 3D cross-linked VO<sub>X</sub>/V<sub>2</sub>CT<sub>X</sub>-MXene-x(VO<sub>X</sub>/MXene-x) composite. The unique structure demonstrates excellent conductivity and high redox reaction activity, which significantly shortens the Zn<sup>2+</sup> diffusion path. Moreover, the intertwined crystalline-amorphous structure efficiently suppresses lattice volume expansion during Zn<sup>2+</sup> (de)intercalation. Density functional theory (DFT) reveals that the amorphous V<sub>2</sub>O<sub>5</sub> enhances conductivity, lowers the Zn<sup>2+</sup> capture energy barrier, and improves charge transfer efficiency. The introduction of oxygen vacancies further enhances the electronic transport. The VO<sub>X</sub>/MXene-4 composite exhibits a specific capacity of 336.39 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>, maintaining 213.06 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>, indicating outstanding rate performance, along with an energy density of 356.27 Wh kg<sup>−1</sup> and a power density of 1280 W kg<sup>−1</sup>. This work offers novel insights for the design of electrode materials that feature intertwined crystalline-amorphous phases, providing valuable insights into ion transport mechanisms and strategies to enhance Zn<sup>2+</sup> diffusion kinetics.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 34","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystalline-Amorphous Phase and Oxygen Vacancies Synergistically Regulate Vanadium Electronic States for Unleashing Zinc-Ion Storage Performance\",\"authors\":\"Jingyu Sun,&nbsp;Li Zhang,&nbsp;Fengbo Li,&nbsp;Fajun Yang,&nbsp;Meiyu Liu,&nbsp;Shaobin Li,&nbsp;Deqing Zhang\",\"doi\":\"10.1002/adfm.202501181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zinc-ion capacitors (ZICs) are emerging as a compelling choice for energy storage in future, promising high power and energy densities coupled with eco-friendly characteristics. This work presents a novel approach to enhance the performance of ZICs by employing a one-step solvothermal synthesis to growth V-MOF on the surface of V<sub>2</sub>CT<sub>X</sub>-MXene, followed by annealing to fabricate a 3D cross-linked VO<sub>X</sub>/V<sub>2</sub>CT<sub>X</sub>-MXene-x(VO<sub>X</sub>/MXene-x) composite. The unique structure demonstrates excellent conductivity and high redox reaction activity, which significantly shortens the Zn<sup>2+</sup> diffusion path. Moreover, the intertwined crystalline-amorphous structure efficiently suppresses lattice volume expansion during Zn<sup>2+</sup> (de)intercalation. Density functional theory (DFT) reveals that the amorphous V<sub>2</sub>O<sub>5</sub> enhances conductivity, lowers the Zn<sup>2+</sup> capture energy barrier, and improves charge transfer efficiency. The introduction of oxygen vacancies further enhances the electronic transport. The VO<sub>X</sub>/MXene-4 composite exhibits a specific capacity of 336.39 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>, maintaining 213.06 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>, indicating outstanding rate performance, along with an energy density of 356.27 Wh kg<sup>−1</sup> and a power density of 1280 W kg<sup>−1</sup>. This work offers novel insights for the design of electrode materials that feature intertwined crystalline-amorphous phases, providing valuable insights into ion transport mechanisms and strategies to enhance Zn<sup>2+</sup> diffusion kinetics.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 34\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202501181\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202501181","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌离子电容器(ZICs)正成为未来能源存储的一个引人注目的选择,具有高功率和能量密度以及环保特性。本研究提出了一种提高zic性能的新方法,通过一步溶剂热合成在V2CTX-MXene表面生长V-MOF,然后退火制备三维交联VOX/V2CTX-MXene-x(VOX/MXene-x)复合材料。独特的结构表现出优异的导电性和较高的氧化还原反应活性,显著缩短了Zn2+的扩散路径。此外,交织的晶非晶结构有效地抑制了Zn2+ (de)插层过程中晶格体积的膨胀。密度泛函理论(DFT)表明,无定形V2O5提高了电导率,降低了Zn2+捕获能垒,提高了电荷转移效率。氧空位的引入进一步增强了电子输运。VOX/MXene-4复合材料在1 a g−1时的比容量为336.39 mAh g−1,在10 a g−1时保持213.06 mAh g−1,具有出色的倍率性能,能量密度为356.27 Wh kg−1,功率密度为1280 W kg−1。这项工作为设计具有交织结晶-非晶相的电极材料提供了新的见解,为离子传输机制和增强Zn2+扩散动力学的策略提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystalline-Amorphous Phase and Oxygen Vacancies Synergistically Regulate Vanadium Electronic States for Unleashing Zinc-Ion Storage Performance

Crystalline-Amorphous Phase and Oxygen Vacancies Synergistically Regulate Vanadium Electronic States for Unleashing Zinc-Ion Storage Performance

Crystalline-Amorphous Phase and Oxygen Vacancies Synergistically Regulate Vanadium Electronic States for Unleashing Zinc-Ion Storage Performance

Zinc-ion capacitors (ZICs) are emerging as a compelling choice for energy storage in future, promising high power and energy densities coupled with eco-friendly characteristics. This work presents a novel approach to enhance the performance of ZICs by employing a one-step solvothermal synthesis to growth V-MOF on the surface of V2CTX-MXene, followed by annealing to fabricate a 3D cross-linked VOX/V2CTX-MXene-x(VOX/MXene-x) composite. The unique structure demonstrates excellent conductivity and high redox reaction activity, which significantly shortens the Zn2+ diffusion path. Moreover, the intertwined crystalline-amorphous structure efficiently suppresses lattice volume expansion during Zn2+ (de)intercalation. Density functional theory (DFT) reveals that the amorphous V2O5 enhances conductivity, lowers the Zn2+ capture energy barrier, and improves charge transfer efficiency. The introduction of oxygen vacancies further enhances the electronic transport. The VOX/MXene-4 composite exhibits a specific capacity of 336.39 mAh g−1 at 1 A g−1, maintaining 213.06 mAh g−1 at 10 A g−1, indicating outstanding rate performance, along with an energy density of 356.27 Wh kg−1 and a power density of 1280 W kg−1. This work offers novel insights for the design of electrode materials that feature intertwined crystalline-amorphous phases, providing valuable insights into ion transport mechanisms and strategies to enhance Zn2+ diffusion kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信