{"title":"具有环境适应性和阻燃性的可拉伸超疏水性的抗变形单片分层织构","authors":"Chun-Bo Li, Fang Wang, Yi-Yang Wang, Mei-Lin Guo, Jin-Le Li, Cong Deng, Fei Song, Wei Yang, Yu-Zhong Wang","doi":"10.1038/s41467-025-58191-w","DOIUrl":null,"url":null,"abstract":"<p>Superamphiphobic and flame-retardant fabrics offer effective protection for firefighters and industrial workers operating under hazardous conditions. However, limitations in deformation resistance, wear comfort, and environmental adaptability hinder their practical applications. Here, a monolithic hierarchical macro-/micro-/nanostructure is constructed to achieve durable repellency against water and oils, even under significant deformations. This coating integrates fluorinated nanoparticles, flame retardant microparticles, and a cross-linking adhesive. Hydrogen bonding and the adhesive define the coating’s morphology, robustness, and adaptability. The coated surface exhibits an ultralow water adhesion force (0.002 mN) and excellent anti-fouling performance against extreme temperatures (100 °C, −196 °C) and corrosive liquids, including aqua regia and concentrated H<sub>2</sub>SO<sub>4</sub>. Upon fire exposure, the coating enables self-extinguishing behavior on cotton fabrics. The coated fabrics also demonstrate remarkable mechanical and UV resistance while preserving wear comfort. Overall, we achieve a balance between desirable properties and wear comfort in superamphiphobic, flame-retardant fabrics, enabling protective clothing applications previously unattainable.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation resistant monolithic hierarchical textures inducing stretchable superamphiphobicity with environmental adaptability and flame retardancy\",\"authors\":\"Chun-Bo Li, Fang Wang, Yi-Yang Wang, Mei-Lin Guo, Jin-Le Li, Cong Deng, Fei Song, Wei Yang, Yu-Zhong Wang\",\"doi\":\"10.1038/s41467-025-58191-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Superamphiphobic and flame-retardant fabrics offer effective protection for firefighters and industrial workers operating under hazardous conditions. However, limitations in deformation resistance, wear comfort, and environmental adaptability hinder their practical applications. Here, a monolithic hierarchical macro-/micro-/nanostructure is constructed to achieve durable repellency against water and oils, even under significant deformations. This coating integrates fluorinated nanoparticles, flame retardant microparticles, and a cross-linking adhesive. Hydrogen bonding and the adhesive define the coating’s morphology, robustness, and adaptability. The coated surface exhibits an ultralow water adhesion force (0.002 mN) and excellent anti-fouling performance against extreme temperatures (100 °C, −196 °C) and corrosive liquids, including aqua regia and concentrated H<sub>2</sub>SO<sub>4</sub>. Upon fire exposure, the coating enables self-extinguishing behavior on cotton fabrics. The coated fabrics also demonstrate remarkable mechanical and UV resistance while preserving wear comfort. Overall, we achieve a balance between desirable properties and wear comfort in superamphiphobic, flame-retardant fabrics, enabling protective clothing applications previously unattainable.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58191-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58191-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Deformation resistant monolithic hierarchical textures inducing stretchable superamphiphobicity with environmental adaptability and flame retardancy
Superamphiphobic and flame-retardant fabrics offer effective protection for firefighters and industrial workers operating under hazardous conditions. However, limitations in deformation resistance, wear comfort, and environmental adaptability hinder their practical applications. Here, a monolithic hierarchical macro-/micro-/nanostructure is constructed to achieve durable repellency against water and oils, even under significant deformations. This coating integrates fluorinated nanoparticles, flame retardant microparticles, and a cross-linking adhesive. Hydrogen bonding and the adhesive define the coating’s morphology, robustness, and adaptability. The coated surface exhibits an ultralow water adhesion force (0.002 mN) and excellent anti-fouling performance against extreme temperatures (100 °C, −196 °C) and corrosive liquids, including aqua regia and concentrated H2SO4. Upon fire exposure, the coating enables self-extinguishing behavior on cotton fabrics. The coated fabrics also demonstrate remarkable mechanical and UV resistance while preserving wear comfort. Overall, we achieve a balance between desirable properties and wear comfort in superamphiphobic, flame-retardant fabrics, enabling protective clothing applications previously unattainable.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.