Jihee Kim, Ana Gabriela Chuquer Licto, Kyungjin Cho, Eun-Ju Kim
{"title":"In situ formed sulfide–mediated aging of polystyrene microplastics and its impact on the fate of heavy metals in anaerobic digestion","authors":"Jihee Kim, Ana Gabriela Chuquer Licto, Kyungjin Cho, Eun-Ju Kim","doi":"10.1016/j.jhazmat.2025.137995","DOIUrl":null,"url":null,"abstract":"Microplastics (MPs) entering wastewater treatment plants accumulate in sludge and are subsequently introduced into anaerobic digesters, a key sludge treatment process. However, little is known about how MPs undergo transformation during anaerobic digestion (AD). This study investigated the mechanism underlying the aging of polystyrene (PS) MPs in AD and its effect on heavy metal adsorption. In the AD batches containing an initial sulfate concentration of 5.1<!-- --> <!-- -->mM, significant sulfate reduction (96.1%) was observed, with reduced sulfur species accounting for 74% of the total sulfur species deposited on the PS surface, as revealed by X-ray photoelectron spectroscopy. A positive correlation between sulfide formation and the selective proliferation of sulfur-reducing bacteria, particularly <em>Desulfovibrio aminophilus</em>, indicated the involvement of microorganisms in sulfur aging. The decomposition of <em>in situ</em> hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and formation of hydroxyl radicals (∙OH) under sulfidogenic conditions were more pronounced, suggesting that reactive oxygen species may induce structural changes in PS MPs and potentially facilitate sulfur aging. Finally, isothermal titration calorimetry results showed that sulfur-aged PS had higher binding constants for Pb²⁺ and Cu²⁺ compared to pristine PS, due to the presence of sulfur-containing functional groups and a more negative surface charge. These findings provide valuable insights into the fate of MPs during the sludge treatment and their potential environmental impacts.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"126 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137995","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
In situ formed sulfide–mediated aging of polystyrene microplastics and its impact on the fate of heavy metals in anaerobic digestion
Microplastics (MPs) entering wastewater treatment plants accumulate in sludge and are subsequently introduced into anaerobic digesters, a key sludge treatment process. However, little is known about how MPs undergo transformation during anaerobic digestion (AD). This study investigated the mechanism underlying the aging of polystyrene (PS) MPs in AD and its effect on heavy metal adsorption. In the AD batches containing an initial sulfate concentration of 5.1 mM, significant sulfate reduction (96.1%) was observed, with reduced sulfur species accounting for 74% of the total sulfur species deposited on the PS surface, as revealed by X-ray photoelectron spectroscopy. A positive correlation between sulfide formation and the selective proliferation of sulfur-reducing bacteria, particularly Desulfovibrio aminophilus, indicated the involvement of microorganisms in sulfur aging. The decomposition of in situ hydrogen peroxide (H2O2) and formation of hydroxyl radicals (∙OH) under sulfidogenic conditions were more pronounced, suggesting that reactive oxygen species may induce structural changes in PS MPs and potentially facilitate sulfur aging. Finally, isothermal titration calorimetry results showed that sulfur-aged PS had higher binding constants for Pb²⁺ and Cu²⁺ compared to pristine PS, due to the presence of sulfur-containing functional groups and a more negative surface charge. These findings provide valuable insights into the fate of MPs during the sludge treatment and their potential environmental impacts.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.