蛋白质组和磷蛋白质组在小鼠组织和脑区的转换图谱

IF 42.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2025-03-20 DOI:10.1016/j.cell.2025.02.021
Wenxue Li, Abhijit Dasgupta, Ka Yang, Shisheng Wang, Nisha Hemandhar-Kumar, Surendhar R. Chepyala, Jay M. Yarbro, Zhenyi Hu, Barbora Salovska, Eugenio F. Fornasiero, Junmin Peng, Yansheng Liu
{"title":"蛋白质组和磷蛋白质组在小鼠组织和脑区的转换图谱","authors":"Wenxue Li, Abhijit Dasgupta, Ka Yang, Shisheng Wang, Nisha Hemandhar-Kumar, Surendhar R. Chepyala, Jay M. Yarbro, Zhenyi Hu, Barbora Salovska, Eugenio F. Fornasiero, Junmin Peng, Yansheng Liu","doi":"10.1016/j.cell.2025.02.021","DOIUrl":null,"url":null,"abstract":"Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications such as phosphorylation are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present <em>Turnover-PPT</em>, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites in eight mouse tissues and various brain regions using advanced proteomics and stable isotope labeling. We reveal tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discover a remarkable pattern of turnover changes for peroxisome proteins in specific tissues and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, <em>Turnover-PPT</em> provides fundamental insights into protein stability, tissue dynamic proteotypes, and functional protein phosphorylation and is accessible via an interactive web-based portal at <span><span>https://yslproteomics.shinyapps.io/tissuePPT</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"49 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turnover atlas of proteome and phosphoproteome across mouse tissues and brain regions\",\"authors\":\"Wenxue Li, Abhijit Dasgupta, Ka Yang, Shisheng Wang, Nisha Hemandhar-Kumar, Surendhar R. Chepyala, Jay M. Yarbro, Zhenyi Hu, Barbora Salovska, Eugenio F. Fornasiero, Junmin Peng, Yansheng Liu\",\"doi\":\"10.1016/j.cell.2025.02.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications such as phosphorylation are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present <em>Turnover-PPT</em>, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites in eight mouse tissues and various brain regions using advanced proteomics and stable isotope labeling. We reveal tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discover a remarkable pattern of turnover changes for peroxisome proteins in specific tissues and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, <em>Turnover-PPT</em> provides fundamental insights into protein stability, tissue dynamic proteotypes, and functional protein phosphorylation and is accessible via an interactive web-based portal at <span><span>https://yslproteomics.shinyapps.io/tissuePPT</span><svg aria-label=\\\"Opens in new window\\\" focusable=\\\"false\\\" height=\\\"20\\\" viewbox=\\\"0 0 8 8\\\"><path d=\\\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\\\"></path></svg></span>.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":42.5000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2025.02.021\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.02.021","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解不同哺乳动物组织中的蛋白质是如何被调节的是生物学的核心。蛋白质丰度、周转率和翻译后修饰(如磷酸化)是决定组织特异性蛋白质组特性的关键因素。然而,这些特性在跨组织研究中具有挑战性,并且仍然知之甚少。在这里,我们展示了一个综合资源,利用先进的蛋白质组学和稳定同位素标记,绘制了8个小鼠组织和不同大脑区域中11,000个蛋白质和40,000个磷酸基的丰度和寿命。我们揭示了组织特异性的短寿命和长寿命蛋白质,相互作用蛋白质寿命之间的强相关性,以及磷酸化对蛋白质周转的独特影响。值得注意的是,我们发现了特定组织中过氧化物酶体蛋白的显著转换变化模式,磷酸化调节神经变性相关蛋白(如Tau和α-突触核蛋白)的稳定性。因此,翻转ppt提供了蛋白质稳定性,组织动态蛋白质类型和功能性蛋白质磷酸化的基本见解,并可通过交互式网络门户网站https://yslproteomics.shinyapps.io/tissuePPT访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Turnover atlas of proteome and phosphoproteome across mouse tissues and brain regions

Turnover atlas of proteome and phosphoproteome across mouse tissues and brain regions
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications such as phosphorylation are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites in eight mouse tissues and various brain regions using advanced proteomics and stable isotope labeling. We reveal tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discover a remarkable pattern of turnover changes for peroxisome proteins in specific tissues and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides fundamental insights into protein stability, tissue dynamic proteotypes, and functional protein phosphorylation and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信