F−对g-C3N4纳米管光催化H2O2析出活性的影响及fs-TAS机理研究

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xin Zhou, Songyu Yang, Xiaojing Wang, Zhen Wu, Yiting Huo, Jianjun Zhang
{"title":"F−对g-C3N4纳米管光催化H2O2析出活性的影响及fs-TAS机理研究","authors":"Xin Zhou, Songyu Yang, Xiaojing Wang, Zhen Wu, Yiting Huo, Jianjun Zhang","doi":"10.1016/j.jmst.2025.02.027","DOIUrl":null,"url":null,"abstract":"Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is extensively used in medical disinfection, water treatment, and environmental protection. To achieve the green synthesis of H<sub>2</sub>O<sub>2</sub>, g-C<sub>3</sub>N<sub>4</sub>-based photocatalysis is an effective strategy and shows great potential. Nonetheless, single g-C<sub>3</sub>N<sub>4</sub> exhibits poor photocatalytic properties due to severe photogenerated charge recombination. To solve this challenge, this work enables F<sup>–</sup>adsorption on the surface of g-C<sub>3</sub>N<sub>4</sub> nanotubes in solution driven by Coulomb forces through pH adjustment and the addition of NH<sub>4</sub>F. The photocatalytic H<sub>2</sub>O<sub>2</sub> production rate of the optimal F<sup>–</sup>-decorated g-C<sub>3</sub>N<sub>4</sub> is three times higher than that of pure g-C<sub>3</sub>N<sub>4</sub>, attributing to the synergistic effect of F<sup>–</sup>and H<sup>+</sup>. Quenching experiments verify that the photocatalytic H<sub>2</sub>O<sub>2</sub> production process of CNF is a two-electron oxygen reduction process. Electron quenching dynamics of g-C<sub>3</sub>N<sub>4</sub> and CNF are revealed by femtosecond transient absorption spectroscopy (fs-TAS). Compared to pure g-C<sub>3</sub>N<sub>4</sub>, CNF has an additional ultrashort lifetime (3.1 ps) representing the interfacial electron transfer from the conduction band of g-C<sub>3</sub>N<sub>4</sub> to F<sup>–</sup>. In situ fs-TAS results show that the interfacial electron transfer rate and electron utilization efficiency are respectively increased from 1.5×10<sup>8</sup> s<sup>–1</sup> and 19% in air to 5.0×10<sup>8</sup> s<sup>–1</sup> and 45% in O<sub>2</sub> atmosphere with ethanol sacrificial agent. Hence, the O<sub>2</sub>, H<sup>+</sup>, and photogenerated electrons are key substances in the H<sub>2</sub>O<sub>2</sub> evolution. This work has elucidated the dynamics mechanism of enhanced photocatalytic performance of F<sup>–</sup>-modified g-C<sub>3</sub>N<sub>4</sub> and provides inspiration for the design and synthesis of efficient g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"88 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of F− on photocatalytic H2O2 evolution activity of g-C3N4 nanotubes and fs-TAS mechanism study\",\"authors\":\"Xin Zhou, Songyu Yang, Xiaojing Wang, Zhen Wu, Yiting Huo, Jianjun Zhang\",\"doi\":\"10.1016/j.jmst.2025.02.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is extensively used in medical disinfection, water treatment, and environmental protection. To achieve the green synthesis of H<sub>2</sub>O<sub>2</sub>, g-C<sub>3</sub>N<sub>4</sub>-based photocatalysis is an effective strategy and shows great potential. Nonetheless, single g-C<sub>3</sub>N<sub>4</sub> exhibits poor photocatalytic properties due to severe photogenerated charge recombination. To solve this challenge, this work enables F<sup>–</sup>adsorption on the surface of g-C<sub>3</sub>N<sub>4</sub> nanotubes in solution driven by Coulomb forces through pH adjustment and the addition of NH<sub>4</sub>F. The photocatalytic H<sub>2</sub>O<sub>2</sub> production rate of the optimal F<sup>–</sup>-decorated g-C<sub>3</sub>N<sub>4</sub> is three times higher than that of pure g-C<sub>3</sub>N<sub>4</sub>, attributing to the synergistic effect of F<sup>–</sup>and H<sup>+</sup>. Quenching experiments verify that the photocatalytic H<sub>2</sub>O<sub>2</sub> production process of CNF is a two-electron oxygen reduction process. Electron quenching dynamics of g-C<sub>3</sub>N<sub>4</sub> and CNF are revealed by femtosecond transient absorption spectroscopy (fs-TAS). Compared to pure g-C<sub>3</sub>N<sub>4</sub>, CNF has an additional ultrashort lifetime (3.1 ps) representing the interfacial electron transfer from the conduction band of g-C<sub>3</sub>N<sub>4</sub> to F<sup>–</sup>. In situ fs-TAS results show that the interfacial electron transfer rate and electron utilization efficiency are respectively increased from 1.5×10<sup>8</sup> s<sup>–1</sup> and 19% in air to 5.0×10<sup>8</sup> s<sup>–1</sup> and 45% in O<sub>2</sub> atmosphere with ethanol sacrificial agent. Hence, the O<sub>2</sub>, H<sup>+</sup>, and photogenerated electrons are key substances in the H<sub>2</sub>O<sub>2</sub> evolution. This work has elucidated the dynamics mechanism of enhanced photocatalytic performance of F<sup>–</sup>-modified g-C<sub>3</sub>N<sub>4</sub> and provides inspiration for the design and synthesis of efficient g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.02.027\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.02.027","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过氧化氢(H2O2)广泛应用于医疗消毒、水处理、环境保护等领域。为了实现H2O2的绿色合成,基于g- c3n4的光催化是一种有效的策略,具有很大的潜力。然而,单g-C3N4由于严重的光生电荷重组而表现出较差的光催化性能。为了解决这一挑战,本研究通过调节pH值和添加NH4F,使g-C3N4纳米管在库仑力驱动的溶液中表面吸附f。F -修饰后的g-C3N4光催化H2O2产率比纯g-C3N4高3倍,这是由于F和H+的协同作用。淬火实验验证了CNF光催化制H2O2过程为双电子氧还原过程。利用飞秒瞬态吸收光谱(fs-TAS)研究了g-C3N4和CNF的电子猝灭动力学。与纯g-C3N4相比,CNF具有额外的超短寿命(3.1 ps),代表从g-C3N4的导带到F -的界面电子转移。原位fs-TAS结果表明,加入乙醇牺牲剂后,界面电子转移率和电子利用效率分别从空气中的1.5×108 s-1和19%提高到O2气氛中的5.0×108 s-1和45%。因此,O2、H+和光生电子是H2O2演化过程中的关键物质。本研究阐明了F修饰g-C3N4光催化性能增强的动力学机制,为设计和合成高效的g-C3N4光催化剂提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of F− on photocatalytic H2O2 evolution activity of g-C3N4 nanotubes and fs-TAS mechanism study

Effect of F− on photocatalytic H2O2 evolution activity of g-C3N4 nanotubes and fs-TAS mechanism study
Hydrogen peroxide (H2O2) is extensively used in medical disinfection, water treatment, and environmental protection. To achieve the green synthesis of H2O2, g-C3N4-based photocatalysis is an effective strategy and shows great potential. Nonetheless, single g-C3N4 exhibits poor photocatalytic properties due to severe photogenerated charge recombination. To solve this challenge, this work enables Fadsorption on the surface of g-C3N4 nanotubes in solution driven by Coulomb forces through pH adjustment and the addition of NH4F. The photocatalytic H2O2 production rate of the optimal F-decorated g-C3N4 is three times higher than that of pure g-C3N4, attributing to the synergistic effect of Fand H+. Quenching experiments verify that the photocatalytic H2O2 production process of CNF is a two-electron oxygen reduction process. Electron quenching dynamics of g-C3N4 and CNF are revealed by femtosecond transient absorption spectroscopy (fs-TAS). Compared to pure g-C3N4, CNF has an additional ultrashort lifetime (3.1 ps) representing the interfacial electron transfer from the conduction band of g-C3N4 to F. In situ fs-TAS results show that the interfacial electron transfer rate and electron utilization efficiency are respectively increased from 1.5×108 s–1 and 19% in air to 5.0×108 s–1 and 45% in O2 atmosphere with ethanol sacrificial agent. Hence, the O2, H+, and photogenerated electrons are key substances in the H2O2 evolution. This work has elucidated the dynamics mechanism of enhanced photocatalytic performance of F-modified g-C3N4 and provides inspiration for the design and synthesis of efficient g-C3N4-based photocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信