不同产地苍术根际土壤微生物对其药用活性成分的影响。

Plant signaling & behavior Pub Date : 2025-12-01 Epub Date: 2025-03-19 DOI:10.1080/15592324.2025.2473517
Jia Bai, Yang Lu, Ping Dong, Yu Cao, Jian-Wei Liu, Chun-Ying Zhao
{"title":"不同产地苍术根际土壤微生物对其药用活性成分的影响。","authors":"Jia Bai, Yang Lu, Ping Dong, Yu Cao, Jian-Wei Liu, Chun-Ying Zhao","doi":"10.1080/15592324.2025.2473517","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Analyzing the rhizosphere microbial community structure of <i>Atractylodes chinensis</i> from different regions and its correlation with the accumulation of main medicinal active ingredients, this study aims to explore the impact of rhizosphere soil microorganisms on the effective components of <i>A. chinensis</i>, providing a scientific basis for the high-quality and high-yield cultivation of <i>A. chinensis</i>.</p><p><strong>Methods and results: </strong>The rhizosphere soil of three-year-old <i>A. chinensis</i> was used as the research object. High-throughput sequencing technology was employed to analyze the rhizosphere bacterial and fungal community structures. High Performance Liquid Chromatography (HPLC) was used to detect the contents of atractylodin, atractylon, β-eudesmol, and atractylenolide III in the medicinal materials. Pearson correlation analysis was performed to explore the relationship between soil microbial communities and the active ingredients. α-diversity results showed that the Yaowangmiao village (YWM) microbial community had the highest richness and diversity, while Xingzhoucun (XZC) had the lowest, and Beiwushijiazi village (BWSJZ) had the lowest fungal community diversity and richness. PCoA analysis at the phylum level indicated that soil bacterial communities were more dispersed than fungal communities among different regions. The bacterial community in XZC significantly differed from other regions, while fungal communities in BWSJZ and Ximiaogong village (XMG) showed considerable differences from other regions. The content of active ingredients in different regions showed that Yuzhangzi village (YZZ) and BWSJZ had higher content and better quality of medicinal materials according to the content of atractylodesin specified in the Chinese Pharmacopoeia Commission. The dominant bacterial phylum in the rhizosphere soil of YZZ was <i>Acidobacteriota</i>, and the dominant genus was <i>RB41</i>. In BWSJZ, <i>Acidobacteriota</i> was the dominant bacterial phylum, with <i>Arthrobacter</i> and <i>unclassified_f_Vicinamibacteraceae</i> as dominant genera; the dominant fungal phylum was <i>Basidiomycota</i>, with <i>Tausonia</i> as the dominant genus. Different bacterial and fungal communities synergistically promoted or inhibited the synthesis of four active ingredients.</p><p><strong>Conclusion: </strong>In short, this provides a theoretical basis for the distribution of soil rhizosphere microbial communities in the cultivation of <i>A. chinensis</i> and offers a reference for the cultivation of <i>A. chinensis</i> medicinal materials.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2473517"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of rhizosphere soil microorganisms on the medicinal active ingredients of <i>Atractylodes chinensis</i> from different regions.\",\"authors\":\"Jia Bai, Yang Lu, Ping Dong, Yu Cao, Jian-Wei Liu, Chun-Ying Zhao\",\"doi\":\"10.1080/15592324.2025.2473517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Analyzing the rhizosphere microbial community structure of <i>Atractylodes chinensis</i> from different regions and its correlation with the accumulation of main medicinal active ingredients, this study aims to explore the impact of rhizosphere soil microorganisms on the effective components of <i>A. chinensis</i>, providing a scientific basis for the high-quality and high-yield cultivation of <i>A. chinensis</i>.</p><p><strong>Methods and results: </strong>The rhizosphere soil of three-year-old <i>A. chinensis</i> was used as the research object. High-throughput sequencing technology was employed to analyze the rhizosphere bacterial and fungal community structures. High Performance Liquid Chromatography (HPLC) was used to detect the contents of atractylodin, atractylon, β-eudesmol, and atractylenolide III in the medicinal materials. Pearson correlation analysis was performed to explore the relationship between soil microbial communities and the active ingredients. α-diversity results showed that the Yaowangmiao village (YWM) microbial community had the highest richness and diversity, while Xingzhoucun (XZC) had the lowest, and Beiwushijiazi village (BWSJZ) had the lowest fungal community diversity and richness. PCoA analysis at the phylum level indicated that soil bacterial communities were more dispersed than fungal communities among different regions. The bacterial community in XZC significantly differed from other regions, while fungal communities in BWSJZ and Ximiaogong village (XMG) showed considerable differences from other regions. The content of active ingredients in different regions showed that Yuzhangzi village (YZZ) and BWSJZ had higher content and better quality of medicinal materials according to the content of atractylodesin specified in the Chinese Pharmacopoeia Commission. The dominant bacterial phylum in the rhizosphere soil of YZZ was <i>Acidobacteriota</i>, and the dominant genus was <i>RB41</i>. In BWSJZ, <i>Acidobacteriota</i> was the dominant bacterial phylum, with <i>Arthrobacter</i> and <i>unclassified_f_Vicinamibacteraceae</i> as dominant genera; the dominant fungal phylum was <i>Basidiomycota</i>, with <i>Tausonia</i> as the dominant genus. Different bacterial and fungal communities synergistically promoted or inhibited the synthesis of four active ingredients.</p><p><strong>Conclusion: </strong>In short, this provides a theoretical basis for the distribution of soil rhizosphere microbial communities in the cultivation of <i>A. chinensis</i> and offers a reference for the cultivation of <i>A. chinensis</i> medicinal materials.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":\"20 1\",\"pages\":\"2473517\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2025.2473517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2473517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:分析不同产地白术根际微生物群落结构及其与主要药用活性成分积累的相关性,探讨根际土壤微生物对白术有效成分的影响,为白术优质高产栽培提供科学依据。方法与结果:以3年生白杨根际土壤为研究对象。采用高通量测序技术分析根际细菌和真菌群落结构。采用高效液相色谱法(HPLC)测定药材中白术素、白术元、β-苦参酚、白术内酯III的含量。采用Pearson相关分析探讨土壤微生物群落与有效成分之间的关系。α-多样性结果表明,姚王庙村(YWM)微生物群落的丰富度和多样性最高,兴洲村(XZC)最低,北武家子村(BWSJZ)真菌群落的丰富度和多样性最低。门水平的PCoA分析表明,不同地区土壤细菌群落比真菌群落更分散。XZC的细菌群落与其他地区差异显著,而BWSJZ和西庙宫村(XMG)的真菌群落与其他地区差异较大。根据中国药典委员会规定的苍术苷含量,不同地区的有效成分含量表明,鱼章子村(YZZ)和BWSJZ具有较高的含量和较好的药材质量。YZZ根际土壤优势菌门为酸杆菌门,优势菌属为RB41。BWSJZ的优势菌门为酸杆菌门,优势菌门为节杆菌科和未分类的vinamibacteraceae;真菌的优势门为担子菌门,优势属为担子菌属。不同的细菌和真菌群落协同促进或抑制四种活性成分的合成。结论:总之,为五味子栽培中土壤根际微生物群落的分布提供了理论依据,并为五味子药材的栽培提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of rhizosphere soil microorganisms on the medicinal active ingredients of Atractylodes chinensis from different regions.

Aims: Analyzing the rhizosphere microbial community structure of Atractylodes chinensis from different regions and its correlation with the accumulation of main medicinal active ingredients, this study aims to explore the impact of rhizosphere soil microorganisms on the effective components of A. chinensis, providing a scientific basis for the high-quality and high-yield cultivation of A. chinensis.

Methods and results: The rhizosphere soil of three-year-old A. chinensis was used as the research object. High-throughput sequencing technology was employed to analyze the rhizosphere bacterial and fungal community structures. High Performance Liquid Chromatography (HPLC) was used to detect the contents of atractylodin, atractylon, β-eudesmol, and atractylenolide III in the medicinal materials. Pearson correlation analysis was performed to explore the relationship between soil microbial communities and the active ingredients. α-diversity results showed that the Yaowangmiao village (YWM) microbial community had the highest richness and diversity, while Xingzhoucun (XZC) had the lowest, and Beiwushijiazi village (BWSJZ) had the lowest fungal community diversity and richness. PCoA analysis at the phylum level indicated that soil bacterial communities were more dispersed than fungal communities among different regions. The bacterial community in XZC significantly differed from other regions, while fungal communities in BWSJZ and Ximiaogong village (XMG) showed considerable differences from other regions. The content of active ingredients in different regions showed that Yuzhangzi village (YZZ) and BWSJZ had higher content and better quality of medicinal materials according to the content of atractylodesin specified in the Chinese Pharmacopoeia Commission. The dominant bacterial phylum in the rhizosphere soil of YZZ was Acidobacteriota, and the dominant genus was RB41. In BWSJZ, Acidobacteriota was the dominant bacterial phylum, with Arthrobacter and unclassified_f_Vicinamibacteraceae as dominant genera; the dominant fungal phylum was Basidiomycota, with Tausonia as the dominant genus. Different bacterial and fungal communities synergistically promoted or inhibited the synthesis of four active ingredients.

Conclusion: In short, this provides a theoretical basis for the distribution of soil rhizosphere microbial communities in the cultivation of A. chinensis and offers a reference for the cultivation of A. chinensis medicinal materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信