短期热胁迫对粉虱寄生蜂功能响应及种间互作的影响。

Cuiping Guo, Jiayin Li, Shibo Wu, Xinyuan Yang, Haiyun Xu
{"title":"短期热胁迫对粉虱寄生蜂功能响应及种间互作的影响。","authors":"Cuiping Guo, Jiayin Li, Shibo Wu, Xinyuan Yang, Haiyun Xu","doi":"10.1093/jee/toaf056","DOIUrl":null,"url":null,"abstract":"<p><p>The functional response of a biocontrol agent, as well as its interactions with co-occurring species under thermal stress, are 2 crucial factors in evaluating its ability to control arthropod pests in the context of climate warming. Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae) is one of the most extensively utilized biological control agents for the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). In the present study, we evaluated the effects of short-term heat stress on the functional response and host control efficacy of En. formosa, as well as the interspecific interactions between this parasitoid and the co-occurring parasitoid Eretmocerus hayati (Zolnerowich and Rose) (Hymenoptera: Aphelinidae). At all experimental temperatures, type II functional responses of En. formosa were observed in both parasitism and host feeding. The type of functional response remained unaffected by experimental temperature. Roger's model was utilized to fit the data. Based on the 95% confidence interval, pairwise comparisons of searching rate (a) and handling time (Th) across temperature regimes yielded no significant differences. In most instances, the increased temperatures did not affect the host control efficacy of En. formosa. The coexistence of En. formosa and Er. hayati exhibited a negative impact on En. formosa's parasitism but a positive effect on that of Er. hayati across all temperature regimes. These findings provide valuable knowledge regarding the functional dynamics of En. formosa under climate warming and underscore the importance of understanding interspecific relationships among biocontrol agents to effectively optimize pest management strategies.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of short-term thermal stress on functional response and interspecific interaction of whitefly parasitoids.\",\"authors\":\"Cuiping Guo, Jiayin Li, Shibo Wu, Xinyuan Yang, Haiyun Xu\",\"doi\":\"10.1093/jee/toaf056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The functional response of a biocontrol agent, as well as its interactions with co-occurring species under thermal stress, are 2 crucial factors in evaluating its ability to control arthropod pests in the context of climate warming. Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae) is one of the most extensively utilized biological control agents for the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). In the present study, we evaluated the effects of short-term heat stress on the functional response and host control efficacy of En. formosa, as well as the interspecific interactions between this parasitoid and the co-occurring parasitoid Eretmocerus hayati (Zolnerowich and Rose) (Hymenoptera: Aphelinidae). At all experimental temperatures, type II functional responses of En. formosa were observed in both parasitism and host feeding. The type of functional response remained unaffected by experimental temperature. Roger's model was utilized to fit the data. Based on the 95% confidence interval, pairwise comparisons of searching rate (a) and handling time (Th) across temperature regimes yielded no significant differences. In most instances, the increased temperatures did not affect the host control efficacy of En. formosa. The coexistence of En. formosa and Er. hayati exhibited a negative impact on En. formosa's parasitism but a positive effect on that of Er. hayati across all temperature regimes. These findings provide valuable knowledge regarding the functional dynamics of En. formosa under climate warming and underscore the importance of understanding interspecific relationships among biocontrol agents to effectively optimize pest management strategies.</p>\",\"PeriodicalId\":94077,\"journal\":{\"name\":\"Journal of economic entomology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of economic entomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jee/toaf056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toaf056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在气候变暖背景下,生物防治剂的功能响应及其与共生物种在热胁迫下的相互作用是评估其防治节肢动物害虫能力的两个关键因素。福尔摩沙粉虱(膜翅目:粉虱科)是一种应用最广泛的防治烟粉虱(半翅目:粉虱科)的生物药剂。在本研究中,我们评估了短期热应激对玉米的功能反应和寄主控制效果的影响。以及该寄生蜂与共发生寄生蜂叶蝉(zolnerovich and Rose)的种间相互作用(膜翅目:蚜蜂科)。在所有实验温度下,En的II型功能响应。在寄生和寄主取食中均观察到福尔摩沙虫。功能响应类型不受实验温度的影响。罗杰的模型被用来拟合数据。基于95%置信区间,两两比较不同温度条件下的搜索率(a)和处理时间(Th)没有显著差异。在大多数情况下,温度升高不影响En的宿主控制效果。福尔摩沙。En的共存。福尔摩沙和额。hayati对En的影响为负。福尔摩沙的寄生率对厄尔的寄生率有正向影响。Hayati适用于所有温度。这些发现为En的功能动力学提供了有价值的知识。并强调了解生物防治剂之间的种间关系对于有效优化害虫管理策略的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of short-term thermal stress on functional response and interspecific interaction of whitefly parasitoids.

The functional response of a biocontrol agent, as well as its interactions with co-occurring species under thermal stress, are 2 crucial factors in evaluating its ability to control arthropod pests in the context of climate warming. Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae) is one of the most extensively utilized biological control agents for the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). In the present study, we evaluated the effects of short-term heat stress on the functional response and host control efficacy of En. formosa, as well as the interspecific interactions between this parasitoid and the co-occurring parasitoid Eretmocerus hayati (Zolnerowich and Rose) (Hymenoptera: Aphelinidae). At all experimental temperatures, type II functional responses of En. formosa were observed in both parasitism and host feeding. The type of functional response remained unaffected by experimental temperature. Roger's model was utilized to fit the data. Based on the 95% confidence interval, pairwise comparisons of searching rate (a) and handling time (Th) across temperature regimes yielded no significant differences. In most instances, the increased temperatures did not affect the host control efficacy of En. formosa. The coexistence of En. formosa and Er. hayati exhibited a negative impact on En. formosa's parasitism but a positive effect on that of Er. hayati across all temperature regimes. These findings provide valuable knowledge regarding the functional dynamics of En. formosa under climate warming and underscore the importance of understanding interspecific relationships among biocontrol agents to effectively optimize pest management strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信