优化生物成像:量子计算启发的秃鹰搜索优化运动成像EEG特征选择。

Chandan Choubey, M Dhanalakshmi, S Karunakaran, Gaurav Vishnu Londhe, Vrince Vimal, M K Kirubakaran
{"title":"优化生物成像:量子计算启发的秃鹰搜索优化运动成像EEG特征选择。","authors":"Chandan Choubey, M Dhanalakshmi, S Karunakaran, Gaurav Vishnu Londhe, Vrince Vimal, M K Kirubakaran","doi":"10.1177/15500594251325273","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most important objectives in brain-computer interfaces (BCI) is to identify a subset of characteristics that represents the electroencephalographic (EEG) signal while eliminating elements that are duplicate or irrelevant. Neuroscientific research is advanced by bioimaging, especially in the field of BCI. In this work, a novel quantum computing-inspired bald eagle search optimization (QC-IBESO) method is used to improve the effectiveness of motor imagery EEG feature selection. This method can prevent the dimensionality curse and improve the classification accuracy of the system by lowering the dimensionality of the dataset. The dataset that was used in the assessment is from BCI Competition-III IV-A. To normalize the EEG data, Z-score normalization is used in the preprocessing stage. Principal component analysis reduces dimensionality and preserves important information during feature extraction. In the context of motor imagery, the QC-IBESO approach is utilized to select certain EEG characteristics for bioimaging. This facilitates the exploration of intricate search spaces and improves the detection of critical EEG signals related to motor imagery. The study contrasts the suggested approach with conventional methods like neural networks, support vector machines and logistic regression. To evaluate the efficacy of the suggested strategy in contrast to current techniques, performance measures such as F1-score, precision, accuracy and recall are computed. This work advances the field of feature selection techniques in bioimaging and opens up a novel and intriguing direction for the investigation of quantum-inspired optimization in neuroimaging.</p>","PeriodicalId":93940,"journal":{"name":"Clinical EEG and neuroscience","volume":" ","pages":"15500594251325273"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Bioimaging: Quantum Computing-Inspired Bald Eagle Search Optimization for Motor Imaging EEG Feature Selection.\",\"authors\":\"Chandan Choubey, M Dhanalakshmi, S Karunakaran, Gaurav Vishnu Londhe, Vrince Vimal, M K Kirubakaran\",\"doi\":\"10.1177/15500594251325273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most important objectives in brain-computer interfaces (BCI) is to identify a subset of characteristics that represents the electroencephalographic (EEG) signal while eliminating elements that are duplicate or irrelevant. Neuroscientific research is advanced by bioimaging, especially in the field of BCI. In this work, a novel quantum computing-inspired bald eagle search optimization (QC-IBESO) method is used to improve the effectiveness of motor imagery EEG feature selection. This method can prevent the dimensionality curse and improve the classification accuracy of the system by lowering the dimensionality of the dataset. The dataset that was used in the assessment is from BCI Competition-III IV-A. To normalize the EEG data, Z-score normalization is used in the preprocessing stage. Principal component analysis reduces dimensionality and preserves important information during feature extraction. In the context of motor imagery, the QC-IBESO approach is utilized to select certain EEG characteristics for bioimaging. This facilitates the exploration of intricate search spaces and improves the detection of critical EEG signals related to motor imagery. The study contrasts the suggested approach with conventional methods like neural networks, support vector machines and logistic regression. To evaluate the efficacy of the suggested strategy in contrast to current techniques, performance measures such as F1-score, precision, accuracy and recall are computed. This work advances the field of feature selection techniques in bioimaging and opens up a novel and intriguing direction for the investigation of quantum-inspired optimization in neuroimaging.</p>\",\"PeriodicalId\":93940,\"journal\":{\"name\":\"Clinical EEG and neuroscience\",\"volume\":\" \",\"pages\":\"15500594251325273\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594251325273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15500594251325273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(BCI)最重要的目标之一是识别代表脑电图(EEG)信号的特征子集,同时消除重复或不相关的元素。生物成像促进了神经科学的研究,尤其是脑机接口领域。本文提出了一种基于量子计算的秃鹰搜索优化(QC-IBESO)方法,以提高运动图像脑电特征选择的有效性。该方法通过降低数据集的维数来防止维数诅咒,提高系统的分类精度。评估中使用的数据集来自BCI Competition-III IV-A。为了对EEG数据进行归一化,在预处理阶段采用Z-score归一化。主成分分析在特征提取过程中降低了维数,保留了重要信息。在运动成像的背景下,QC-IBESO方法被用来选择某些EEG特征进行生物成像。这有助于探索复杂的搜索空间,并提高对与运动图像相关的关键EEG信号的检测。该研究将建议的方法与神经网络、支持向量机和逻辑回归等传统方法进行了对比。为了评估建议策略与现有技术相比的有效性,计算了f1分数、精度、准确性和召回率等性能指标。这项工作推进了生物成像中的特征选择技术领域,并为神经成像中量子启发优化的研究开辟了一个新颖而有趣的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Bioimaging: Quantum Computing-Inspired Bald Eagle Search Optimization for Motor Imaging EEG Feature Selection.

One of the most important objectives in brain-computer interfaces (BCI) is to identify a subset of characteristics that represents the electroencephalographic (EEG) signal while eliminating elements that are duplicate or irrelevant. Neuroscientific research is advanced by bioimaging, especially in the field of BCI. In this work, a novel quantum computing-inspired bald eagle search optimization (QC-IBESO) method is used to improve the effectiveness of motor imagery EEG feature selection. This method can prevent the dimensionality curse and improve the classification accuracy of the system by lowering the dimensionality of the dataset. The dataset that was used in the assessment is from BCI Competition-III IV-A. To normalize the EEG data, Z-score normalization is used in the preprocessing stage. Principal component analysis reduces dimensionality and preserves important information during feature extraction. In the context of motor imagery, the QC-IBESO approach is utilized to select certain EEG characteristics for bioimaging. This facilitates the exploration of intricate search spaces and improves the detection of critical EEG signals related to motor imagery. The study contrasts the suggested approach with conventional methods like neural networks, support vector machines and logistic regression. To evaluate the efficacy of the suggested strategy in contrast to current techniques, performance measures such as F1-score, precision, accuracy and recall are computed. This work advances the field of feature selection techniques in bioimaging and opens up a novel and intriguing direction for the investigation of quantum-inspired optimization in neuroimaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信