钙控制假说的广义数学框架描述了体重依赖的突触可塑性。

IF 1.5 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Toviah Moldwin, Li Shay Azran, Idan Segev
{"title":"钙控制假说的广义数学框架描述了体重依赖的突触可塑性。","authors":"Toviah Moldwin, Li Shay Azran, Idan Segev","doi":"10.1007/s10827-025-00894-6","DOIUrl":null,"url":null,"abstract":"<p><p>The brain modifies synaptic strengths to store new information via long-term potentiation (LTP) and long-term depression (LTD). Evidence has mounted that long-term synaptic plasticity is controlled via concentrations of calcium ([Ca<sup>2+</sup>]) in postsynaptic dendritic spines. Several mathematical models describe this phenomenon, including those of Shouval, Bear, and Cooper (SBC) (Shouval et al., 2002, 2010) and Graupner and Brunel (GB) (Graupner & Brunel, 2012). Here we suggest a generalized version of the SBC and GB models, the fixed point - learning rate (FPLR) framework, where the synaptic [Ca<sup>2+</sup>] specifies a fixed point toward which the synaptic weight approaches asymptotically at a [Ca<sup>2+</sup>]-dependent rate. The FPLR framework offers a straightforward phenomenological interpretation of calcium-based plasticity: the calcium concentration tells the synaptic weight where it is going and how quickly it goes there. The FPLR framework can flexibly incorporate various experimental findings, including the existence of multiple regions of [Ca<sup>2+</sup>] where no plasticity occurs, or plasticity observed experimentally in cerebellar Purkinje cells, where the directionality of calcium-based synaptic changes is reversed relative to cortical and hippocampal neurons. We also suggest a modeling approach that captures the dependency of late-phase plasticity stabilization on protein synthesis. We demonstrate that due to the asymptotic nature of synaptic changes in the FPLR rule, the plastic changes induced by frequency- and spike-timing-dependent plasticity protocols are weight-dependent. Finally, we show how the FPLR framework can explain the weight-dependence observed in behavioral time scale plasticity (BTSP).</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized mathematical framework for the calcium control hypothesis describes weight-dependent synaptic plasticity.\",\"authors\":\"Toviah Moldwin, Li Shay Azran, Idan Segev\",\"doi\":\"10.1007/s10827-025-00894-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain modifies synaptic strengths to store new information via long-term potentiation (LTP) and long-term depression (LTD). Evidence has mounted that long-term synaptic plasticity is controlled via concentrations of calcium ([Ca<sup>2+</sup>]) in postsynaptic dendritic spines. Several mathematical models describe this phenomenon, including those of Shouval, Bear, and Cooper (SBC) (Shouval et al., 2002, 2010) and Graupner and Brunel (GB) (Graupner & Brunel, 2012). Here we suggest a generalized version of the SBC and GB models, the fixed point - learning rate (FPLR) framework, where the synaptic [Ca<sup>2+</sup>] specifies a fixed point toward which the synaptic weight approaches asymptotically at a [Ca<sup>2+</sup>]-dependent rate. The FPLR framework offers a straightforward phenomenological interpretation of calcium-based plasticity: the calcium concentration tells the synaptic weight where it is going and how quickly it goes there. The FPLR framework can flexibly incorporate various experimental findings, including the existence of multiple regions of [Ca<sup>2+</sup>] where no plasticity occurs, or plasticity observed experimentally in cerebellar Purkinje cells, where the directionality of calcium-based synaptic changes is reversed relative to cortical and hippocampal neurons. We also suggest a modeling approach that captures the dependency of late-phase plasticity stabilization on protein synthesis. We demonstrate that due to the asymptotic nature of synaptic changes in the FPLR rule, the plastic changes induced by frequency- and spike-timing-dependent plasticity protocols are weight-dependent. Finally, we show how the FPLR framework can explain the weight-dependence observed in behavioral time scale plasticity (BTSP).</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-025-00894-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-025-00894-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大脑通过长期增强(LTP)和长期抑制(LTD)改变突触强度来存储新信息。越来越多的证据表明,突触的长期可塑性是通过突触后树突棘中钙([Ca2+])的浓度来控制的。有几个数学模型描述了这一现象,包括Shouval、Bear和Cooper (SBC) (Shouval等人,2002年,2010年)和Graupner和Brunel (GB) (Graupner和Brunel, 2012年)的模型。在这里,我们提出了SBC和GB模型的一个广义版本,即固定点学习率(FPLR)框架,其中突触[Ca2+]指定了一个固定点,突触权重以[Ca2+]依赖的速率渐近接近。FPLR框架为钙基可塑性提供了一种直接的现象学解释:钙浓度告诉突触重量它去哪里以及它到达那里的速度。FPLR框架可以灵活地结合各种实验结果,包括存在多个不发生可塑性的[Ca2+]区域,或者在小脑浦肯野细胞中实验观察到的可塑性,其中钙基突触变化的方向性相对于皮质和海马神经元是相反的。我们还提出了一种建模方法,该方法捕获了后期塑性稳定对蛋白质合成的依赖性。我们证明,由于FPLR规则中突触变化的渐近性质,频率和尖峰时间相关的可塑性协议引起的塑性变化是权重相关的。最后,我们展示了FPLR框架如何解释行为时间尺度可塑性(BTSP)中观察到的权重依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized mathematical framework for the calcium control hypothesis describes weight-dependent synaptic plasticity.

The brain modifies synaptic strengths to store new information via long-term potentiation (LTP) and long-term depression (LTD). Evidence has mounted that long-term synaptic plasticity is controlled via concentrations of calcium ([Ca2+]) in postsynaptic dendritic spines. Several mathematical models describe this phenomenon, including those of Shouval, Bear, and Cooper (SBC) (Shouval et al., 2002, 2010) and Graupner and Brunel (GB) (Graupner & Brunel, 2012). Here we suggest a generalized version of the SBC and GB models, the fixed point - learning rate (FPLR) framework, where the synaptic [Ca2+] specifies a fixed point toward which the synaptic weight approaches asymptotically at a [Ca2+]-dependent rate. The FPLR framework offers a straightforward phenomenological interpretation of calcium-based plasticity: the calcium concentration tells the synaptic weight where it is going and how quickly it goes there. The FPLR framework can flexibly incorporate various experimental findings, including the existence of multiple regions of [Ca2+] where no plasticity occurs, or plasticity observed experimentally in cerebellar Purkinje cells, where the directionality of calcium-based synaptic changes is reversed relative to cortical and hippocampal neurons. We also suggest a modeling approach that captures the dependency of late-phase plasticity stabilization on protein synthesis. We demonstrate that due to the asymptotic nature of synaptic changes in the FPLR rule, the plastic changes induced by frequency- and spike-timing-dependent plasticity protocols are weight-dependent. Finally, we show how the FPLR framework can explain the weight-dependence observed in behavioral time scale plasticity (BTSP).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信