{"title":"用于个性化癌症治疗的靶向纳米递送系统。","authors":"Szymon Roszkowski, Zofia Durczyńska, Sylwia Szablewska","doi":"10.5603/rpor.103524","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional cancer therapies such as chemotherapy face challenges such as poor tumor targeting, systemic toxicity, and drug resistance. Nanotechnology offers solutions through advanced drug delivery systems that preferentially accumulate in tumors while avoiding healthy tissues. Recent innovations have enabled the optimization of engineered nanocarriers for extended circulation and tumor localization via both passive and active targeting mechanisms. Passive accumulation exploits the leaky vasculature of tumors, whereas active strategies use ligands to selectively bind cancer cell receptors. Multifunctional nanoparticles also allow the combination of imaging, multiple therapeutic modalities and on-demand drug release within a single platform. Overall, precisely tailored nanotherapeutics that leverage unique pathophysiological traits of malignancies provide opportunities to overcome the limitations of traditional treatment regimens. This emerging field promises more effective and personalized nanomedicine approaches to detect and treat cancer. The key aspects highlighted in this review include the biological barriers associated with nanoparticles, rational design principles to optimize nanocarrier pharmacokinetics and tumor uptake, passive and active targeting strategies, multifunctionality, and reversal of multidrug resistance.</p>","PeriodicalId":47283,"journal":{"name":"Reports of Practical Oncology and Radiotherapy","volume":"29 6","pages":"776-788"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912883/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted nanodelivery systems for personalized cancer therapy.\",\"authors\":\"Szymon Roszkowski, Zofia Durczyńska, Sylwia Szablewska\",\"doi\":\"10.5603/rpor.103524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional cancer therapies such as chemotherapy face challenges such as poor tumor targeting, systemic toxicity, and drug resistance. Nanotechnology offers solutions through advanced drug delivery systems that preferentially accumulate in tumors while avoiding healthy tissues. Recent innovations have enabled the optimization of engineered nanocarriers for extended circulation and tumor localization via both passive and active targeting mechanisms. Passive accumulation exploits the leaky vasculature of tumors, whereas active strategies use ligands to selectively bind cancer cell receptors. Multifunctional nanoparticles also allow the combination of imaging, multiple therapeutic modalities and on-demand drug release within a single platform. Overall, precisely tailored nanotherapeutics that leverage unique pathophysiological traits of malignancies provide opportunities to overcome the limitations of traditional treatment regimens. This emerging field promises more effective and personalized nanomedicine approaches to detect and treat cancer. The key aspects highlighted in this review include the biological barriers associated with nanoparticles, rational design principles to optimize nanocarrier pharmacokinetics and tumor uptake, passive and active targeting strategies, multifunctionality, and reversal of multidrug resistance.</p>\",\"PeriodicalId\":47283,\"journal\":{\"name\":\"Reports of Practical Oncology and Radiotherapy\",\"volume\":\"29 6\",\"pages\":\"776-788\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912883/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of Practical Oncology and Radiotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5603/rpor.103524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Practical Oncology and Radiotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5603/rpor.103524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
Targeted nanodelivery systems for personalized cancer therapy.
Conventional cancer therapies such as chemotherapy face challenges such as poor tumor targeting, systemic toxicity, and drug resistance. Nanotechnology offers solutions through advanced drug delivery systems that preferentially accumulate in tumors while avoiding healthy tissues. Recent innovations have enabled the optimization of engineered nanocarriers for extended circulation and tumor localization via both passive and active targeting mechanisms. Passive accumulation exploits the leaky vasculature of tumors, whereas active strategies use ligands to selectively bind cancer cell receptors. Multifunctional nanoparticles also allow the combination of imaging, multiple therapeutic modalities and on-demand drug release within a single platform. Overall, precisely tailored nanotherapeutics that leverage unique pathophysiological traits of malignancies provide opportunities to overcome the limitations of traditional treatment regimens. This emerging field promises more effective and personalized nanomedicine approaches to detect and treat cancer. The key aspects highlighted in this review include the biological barriers associated with nanoparticles, rational design principles to optimize nanocarrier pharmacokinetics and tumor uptake, passive and active targeting strategies, multifunctionality, and reversal of multidrug resistance.
期刊介绍:
Reports of Practical Oncology and Radiotherapy is an interdisciplinary bimonthly journal, publishing original contributions in clinical oncology and radiotherapy, as well as in radiotherapy physics, techniques and radiotherapy equipment. Reports of Practical Oncology and Radiotherapy is a journal of the Polish Society of Radiation Oncology, the Czech Society of Radiation Oncology, the Hungarian Society for Radiation Oncology, the Slovenian Society for Radiotherapy and Oncology, the Polish Study Group of Head and Neck Cancer, the Guild of Bulgarian Radiotherapists and the Greater Poland Cancer Centre, affiliated with the Spanish Society of Radiotherapy and Oncology, the Italian Association of Radiotherapy and the Portuguese Society of Radiotherapy - Oncology.