{"title":"辣椒bZIP转录因子CaADBZ1在脱落酸信号和干旱胁迫响应中的作用","authors":"Jihye Choi, Chae Woo Lim, Sung Chul Lee","doi":"10.1111/ppl.70159","DOIUrl":null,"url":null,"abstract":"<p><p>In plants, basic-region/leucine-zipper (bZIP) transcription factors are key regulators of stress responses mediated by various phytohormone signalling pathways. However, the roles of bZIP transcription factors in pepper, particularly those associated with ABA signalling and drought stress, remain poorly understood. In this study, we isolated the CaADBZ1 (Capsicum annuum ABA and Dehydration-Induced bZIP transcription factor 1) gene, a member of the group A family, and analysed its functions in response to dehydration stress and ABA signalling. The expression of CaADBZ1 was specifically induced by dehydration and exogenous ABA treatment, not salinity and osmotic stress. CaADBZ1 was found to have transactivation activity in yeast cells, which was dependent on the N-terminal of CaADBZ1 (amino acids 1-112), harbouring a highly conserved C1 domain. Notably, a dual-luciferase reporter assay revealed that CaADBZ1 modulated the expression of CaOSR1, a dehydration stress-responsive gene in pepper plants. Functional studies in both pepper and Arabidopsis plants revealed that the modulation of CaADBZ1 expression level affected dehydration stress resistance in pepper and Arabidopsis plants. CaADBZ1-silenced pepper Arabidopsis plants showed dehydration stress-sensitive phenotypes characterized by higher transpiration rates and reduced expression of dehydration-responsive genes compared to control plants. Conversely, overexpression of the CaADBZ1 gene in Arabidopsis plants enhanced dehydration stress resistance. Moreover, CaADBZ1-overexpressing Arabidopsis transgenic plants showed increased ABA sensitivity during the seedling stage. Collectively, our findings suggest that CaADBZ1 plays a crucial role in enhancing dehydration stress tolerance in plants by positively regulating ABA sensitivity and dehydration-responsive gene expression.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70159"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920937/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of pepper bZIP transcription factor CaADBZ1 in abscisic acid signalling and drought stress response.\",\"authors\":\"Jihye Choi, Chae Woo Lim, Sung Chul Lee\",\"doi\":\"10.1111/ppl.70159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In plants, basic-region/leucine-zipper (bZIP) transcription factors are key regulators of stress responses mediated by various phytohormone signalling pathways. However, the roles of bZIP transcription factors in pepper, particularly those associated with ABA signalling and drought stress, remain poorly understood. In this study, we isolated the CaADBZ1 (Capsicum annuum ABA and Dehydration-Induced bZIP transcription factor 1) gene, a member of the group A family, and analysed its functions in response to dehydration stress and ABA signalling. The expression of CaADBZ1 was specifically induced by dehydration and exogenous ABA treatment, not salinity and osmotic stress. CaADBZ1 was found to have transactivation activity in yeast cells, which was dependent on the N-terminal of CaADBZ1 (amino acids 1-112), harbouring a highly conserved C1 domain. Notably, a dual-luciferase reporter assay revealed that CaADBZ1 modulated the expression of CaOSR1, a dehydration stress-responsive gene in pepper plants. Functional studies in both pepper and Arabidopsis plants revealed that the modulation of CaADBZ1 expression level affected dehydration stress resistance in pepper and Arabidopsis plants. CaADBZ1-silenced pepper Arabidopsis plants showed dehydration stress-sensitive phenotypes characterized by higher transpiration rates and reduced expression of dehydration-responsive genes compared to control plants. Conversely, overexpression of the CaADBZ1 gene in Arabidopsis plants enhanced dehydration stress resistance. Moreover, CaADBZ1-overexpressing Arabidopsis transgenic plants showed increased ABA sensitivity during the seedling stage. Collectively, our findings suggest that CaADBZ1 plays a crucial role in enhancing dehydration stress tolerance in plants by positively regulating ABA sensitivity and dehydration-responsive gene expression.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70159\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920937/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70159\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70159","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Role of pepper bZIP transcription factor CaADBZ1 in abscisic acid signalling and drought stress response.
In plants, basic-region/leucine-zipper (bZIP) transcription factors are key regulators of stress responses mediated by various phytohormone signalling pathways. However, the roles of bZIP transcription factors in pepper, particularly those associated with ABA signalling and drought stress, remain poorly understood. In this study, we isolated the CaADBZ1 (Capsicum annuum ABA and Dehydration-Induced bZIP transcription factor 1) gene, a member of the group A family, and analysed its functions in response to dehydration stress and ABA signalling. The expression of CaADBZ1 was specifically induced by dehydration and exogenous ABA treatment, not salinity and osmotic stress. CaADBZ1 was found to have transactivation activity in yeast cells, which was dependent on the N-terminal of CaADBZ1 (amino acids 1-112), harbouring a highly conserved C1 domain. Notably, a dual-luciferase reporter assay revealed that CaADBZ1 modulated the expression of CaOSR1, a dehydration stress-responsive gene in pepper plants. Functional studies in both pepper and Arabidopsis plants revealed that the modulation of CaADBZ1 expression level affected dehydration stress resistance in pepper and Arabidopsis plants. CaADBZ1-silenced pepper Arabidopsis plants showed dehydration stress-sensitive phenotypes characterized by higher transpiration rates and reduced expression of dehydration-responsive genes compared to control plants. Conversely, overexpression of the CaADBZ1 gene in Arabidopsis plants enhanced dehydration stress resistance. Moreover, CaADBZ1-overexpressing Arabidopsis transgenic plants showed increased ABA sensitivity during the seedling stage. Collectively, our findings suggest that CaADBZ1 plays a crucial role in enhancing dehydration stress tolerance in plants by positively regulating ABA sensitivity and dehydration-responsive gene expression.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.