Yunfei Cai, Jiali Ying, Youju Ye, Shuangshuang Wen, Renjuan Qian
{"title":"绿光诱导茄JA合成,抑制灰霉菌感染垫形成,抵抗灰霉菌病。","authors":"Yunfei Cai, Jiali Ying, Youju Ye, Shuangshuang Wen, Renjuan Qian","doi":"10.1111/ppl.70156","DOIUrl":null,"url":null,"abstract":"<p><p>Light signals are prevalent and influence the survival strategies of both plants and the pathogenic fungi that infect them. In this study, we found that green light inhibits the infectivity of Botrytis cinerea on Solanum lycopersicum. Through transcriptome analysis and validation of S. lycopersicum leaves infected with B. cinerea, we discovered that green light enhances the synthesis of jasmonic acid and its related metabolites by upregulating the expression of OPR3 and JAR1 in S. lycopersicum. Additionally, green light boosts the activity of antioxidant enzymes like peroxidase, catalase, and ascorbic acid peroxidase in S. lycopersicum to combat tomato grey mould. Conversely, green light inhibits the expression of plant-induced colonization onset genes, mitogen-activated protein kinase genes, and the formation of infection cushions in B. cinerea. Our findings provide insights into the role of environmental green light signals in the interaction system between plants and phytopathogenic fungi.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70156"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green light induces Solanum lycopersicum JA synthesis and inhibits Botrytis cinerea infection cushion formation to resist grey mould disease.\",\"authors\":\"Yunfei Cai, Jiali Ying, Youju Ye, Shuangshuang Wen, Renjuan Qian\",\"doi\":\"10.1111/ppl.70156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Light signals are prevalent and influence the survival strategies of both plants and the pathogenic fungi that infect them. In this study, we found that green light inhibits the infectivity of Botrytis cinerea on Solanum lycopersicum. Through transcriptome analysis and validation of S. lycopersicum leaves infected with B. cinerea, we discovered that green light enhances the synthesis of jasmonic acid and its related metabolites by upregulating the expression of OPR3 and JAR1 in S. lycopersicum. Additionally, green light boosts the activity of antioxidant enzymes like peroxidase, catalase, and ascorbic acid peroxidase in S. lycopersicum to combat tomato grey mould. Conversely, green light inhibits the expression of plant-induced colonization onset genes, mitogen-activated protein kinase genes, and the formation of infection cushions in B. cinerea. Our findings provide insights into the role of environmental green light signals in the interaction system between plants and phytopathogenic fungi.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70156\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70156\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70156","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Green light induces Solanum lycopersicum JA synthesis and inhibits Botrytis cinerea infection cushion formation to resist grey mould disease.
Light signals are prevalent and influence the survival strategies of both plants and the pathogenic fungi that infect them. In this study, we found that green light inhibits the infectivity of Botrytis cinerea on Solanum lycopersicum. Through transcriptome analysis and validation of S. lycopersicum leaves infected with B. cinerea, we discovered that green light enhances the synthesis of jasmonic acid and its related metabolites by upregulating the expression of OPR3 and JAR1 in S. lycopersicum. Additionally, green light boosts the activity of antioxidant enzymes like peroxidase, catalase, and ascorbic acid peroxidase in S. lycopersicum to combat tomato grey mould. Conversely, green light inhibits the expression of plant-induced colonization onset genes, mitogen-activated protein kinase genes, and the formation of infection cushions in B. cinerea. Our findings provide insights into the role of environmental green light signals in the interaction system between plants and phytopathogenic fungi.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.