Preeti Choudhary, Ibrahim Roshan Kunnakkattu, Sreenath Nair, Dare Kayode Lawal, Ivanna Pidruchna, Marcelo Querino Lima Afonso, Jennifer R Fleming, Sameer Velankar
{"title":"PDBe工具对蛋白质数据库中的小分子进行深入分析。","authors":"Preeti Choudhary, Ibrahim Roshan Kunnakkattu, Sreenath Nair, Dare Kayode Lawal, Ivanna Pidruchna, Marcelo Querino Lima Afonso, Jennifer R Fleming, Sameer Velankar","doi":"10.1002/pro.70084","DOIUrl":null,"url":null,"abstract":"<p><p>The Protein Data Bank (PDB) is the primary global repository for experimentally determined 3D structures of biological macromolecules and their complexes with ligands, proteins, and nucleic acids. PDB contains over 47,000 unique small molecules bound to the macromolecules. Despite the extensive data available, the complexity of small-molecule data in the PDB necessitates specialized tools for effective analysis and visualization. PDBe has developed a number of tools, including PDBe CCDUtils (https://github.com/PDBeurope/ccdutils) for accessing and enriching ligand data, PDBe Arpeggio (https://github.com/PDBeurope/arpeggio) for analyzing interactions between ligands and macromolecules, and PDBe RelLig (https://github.com/PDBeurope/rellig) for identifying the functional roles of ligands (such as reactants, cofactors, or drug-like molecules) within protein-ligand complexes. The enhanced ligand annotations and data generated by these tools are presented on the novel PDBe-KB ligand pages, offering a comprehensive overview of small molecules and providing valuable insights into their biological contexts (example page for Imatinib: https://pdbe.org/chem/sti). By improving the standardization of ligand identification, adding various annotations, and offering advanced visualization capabilities, these tools help researchers navigate the complexities of small molecules and their roles in biological systems, facilitating mechanistic understanding of biological functions. The ongoing enhancements to these resources are designed to support the scientific community in gaining valuable insights into ligands and their applications across various fields, including drug discovery, molecular biology, systems biology, structural biology, and pharmacology.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70084"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917123/pdf/","citationCount":"0","resultStr":"{\"title\":\"PDBe tools for an in-depth analysis of small molecules in the Protein Data Bank.\",\"authors\":\"Preeti Choudhary, Ibrahim Roshan Kunnakkattu, Sreenath Nair, Dare Kayode Lawal, Ivanna Pidruchna, Marcelo Querino Lima Afonso, Jennifer R Fleming, Sameer Velankar\",\"doi\":\"10.1002/pro.70084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Protein Data Bank (PDB) is the primary global repository for experimentally determined 3D structures of biological macromolecules and their complexes with ligands, proteins, and nucleic acids. PDB contains over 47,000 unique small molecules bound to the macromolecules. Despite the extensive data available, the complexity of small-molecule data in the PDB necessitates specialized tools for effective analysis and visualization. PDBe has developed a number of tools, including PDBe CCDUtils (https://github.com/PDBeurope/ccdutils) for accessing and enriching ligand data, PDBe Arpeggio (https://github.com/PDBeurope/arpeggio) for analyzing interactions between ligands and macromolecules, and PDBe RelLig (https://github.com/PDBeurope/rellig) for identifying the functional roles of ligands (such as reactants, cofactors, or drug-like molecules) within protein-ligand complexes. The enhanced ligand annotations and data generated by these tools are presented on the novel PDBe-KB ligand pages, offering a comprehensive overview of small molecules and providing valuable insights into their biological contexts (example page for Imatinib: https://pdbe.org/chem/sti). By improving the standardization of ligand identification, adding various annotations, and offering advanced visualization capabilities, these tools help researchers navigate the complexities of small molecules and their roles in biological systems, facilitating mechanistic understanding of biological functions. The ongoing enhancements to these resources are designed to support the scientific community in gaining valuable insights into ligands and their applications across various fields, including drug discovery, molecular biology, systems biology, structural biology, and pharmacology.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 4\",\"pages\":\"e70084\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917123/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70084\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PDBe tools for an in-depth analysis of small molecules in the Protein Data Bank.
The Protein Data Bank (PDB) is the primary global repository for experimentally determined 3D structures of biological macromolecules and their complexes with ligands, proteins, and nucleic acids. PDB contains over 47,000 unique small molecules bound to the macromolecules. Despite the extensive data available, the complexity of small-molecule data in the PDB necessitates specialized tools for effective analysis and visualization. PDBe has developed a number of tools, including PDBe CCDUtils (https://github.com/PDBeurope/ccdutils) for accessing and enriching ligand data, PDBe Arpeggio (https://github.com/PDBeurope/arpeggio) for analyzing interactions between ligands and macromolecules, and PDBe RelLig (https://github.com/PDBeurope/rellig) for identifying the functional roles of ligands (such as reactants, cofactors, or drug-like molecules) within protein-ligand complexes. The enhanced ligand annotations and data generated by these tools are presented on the novel PDBe-KB ligand pages, offering a comprehensive overview of small molecules and providing valuable insights into their biological contexts (example page for Imatinib: https://pdbe.org/chem/sti). By improving the standardization of ligand identification, adding various annotations, and offering advanced visualization capabilities, these tools help researchers navigate the complexities of small molecules and their roles in biological systems, facilitating mechanistic understanding of biological functions. The ongoing enhancements to these resources are designed to support the scientific community in gaining valuable insights into ligands and their applications across various fields, including drug discovery, molecular biology, systems biology, structural biology, and pharmacology.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).