序列异质性作为原核生物血统预测指标的局限性

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Open Biology Pub Date : 2025-03-01 Epub Date: 2025-03-19 DOI:10.1098/rsob.240302
Alvar A Lavin, Juan Rivas-Santisteban
{"title":"序列异质性作为原核生物血统预测指标的局限性","authors":"Alvar A Lavin, Juan Rivas-Santisteban","doi":"10.1098/rsob.240302","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular clock rests upon the assumption that the observed changes among sequences capture the differentiation of lineages, or kinship, as dissimilarity increases with time. Although it has been questioned over the years, this paradigmatic principle continues to underlie the idea that the polymorphic space of a gene is so vast that it is unattainable in evolutionary time. Thus, the molecular clock has been used to obtain taxonomic annotations, proving to be very effective at delivering testable results. In this article, however, we ask how often this assumption leads to inaccuracies when inferring the lineage of prokaryotic genes. Thus, we open an interesting discussion by simulating, in realistic scenarios, the critical times in which specific 5S rRNA sequences of two distant lineages are exhausting the polymorphic space. We contend that certain genes in one lineage will become increasingly similar to those in another over time, as the space for new variants is finite, mimicking phylogenetic features by convergence or by chance, without implying true kinship.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"15 3","pages":"240302"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919493/pdf/","citationCount":"0","resultStr":"{\"title\":\"Limitations of sequence dissimilarity as a predictor of prokaryotic lineage.\",\"authors\":\"Alvar A Lavin, Juan Rivas-Santisteban\",\"doi\":\"10.1098/rsob.240302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The molecular clock rests upon the assumption that the observed changes among sequences capture the differentiation of lineages, or kinship, as dissimilarity increases with time. Although it has been questioned over the years, this paradigmatic principle continues to underlie the idea that the polymorphic space of a gene is so vast that it is unattainable in evolutionary time. Thus, the molecular clock has been used to obtain taxonomic annotations, proving to be very effective at delivering testable results. In this article, however, we ask how often this assumption leads to inaccuracies when inferring the lineage of prokaryotic genes. Thus, we open an interesting discussion by simulating, in realistic scenarios, the critical times in which specific 5S rRNA sequences of two distant lineages are exhausting the polymorphic space. We contend that certain genes in one lineage will become increasingly similar to those in another over time, as the space for new variants is finite, mimicking phylogenetic features by convergence or by chance, without implying true kinship.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"15 3\",\"pages\":\"240302\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.240302\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240302","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limitations of sequence dissimilarity as a predictor of prokaryotic lineage.

The molecular clock rests upon the assumption that the observed changes among sequences capture the differentiation of lineages, or kinship, as dissimilarity increases with time. Although it has been questioned over the years, this paradigmatic principle continues to underlie the idea that the polymorphic space of a gene is so vast that it is unattainable in evolutionary time. Thus, the molecular clock has been used to obtain taxonomic annotations, proving to be very effective at delivering testable results. In this article, however, we ask how often this assumption leads to inaccuracies when inferring the lineage of prokaryotic genes. Thus, we open an interesting discussion by simulating, in realistic scenarios, the critical times in which specific 5S rRNA sequences of two distant lineages are exhausting the polymorphic space. We contend that certain genes in one lineage will become increasingly similar to those in another over time, as the space for new variants is finite, mimicking phylogenetic features by convergence or by chance, without implying true kinship.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Biology
Open Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.00
自引率
1.70%
发文量
136
审稿时长
6-12 weeks
期刊介绍: Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信