复杂量子系统模态空间的结构与对称性。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Guohua Tao
{"title":"复杂量子系统模态空间的结构与对称性。","authors":"Guohua Tao","doi":"10.1063/5.0245447","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the state space structure of complex quantum systems can help to effectively characterize the system properties and explore underlying mechanisms. The structure of the state space could be quite complicated for quantum many-body systems, and the systematic decomposition of the state space is normally involved. Recently, a modular tensor diagram approach was proposed to reorganize the state space hierarchically based on a modular basis. Here, we review the construction of spin eigenfunctions for multiple exciton systems and further develop modular tensor diagrams to exemplify the hierarchical symmetry of the state space. The newly constructed spin eigenfunctions for quadruple excitons, along with the results for triple excitons, are used to demonstrate the effective decomposition of the state space into hierarchical tensorial structures. A universal recursive relation is derived to determine the coefficients of spin eigenfunctions exhibiting transformation symmetry between different classes of elementary modules for an arbitrary number of exciton units. Interestingly, different coupling schemes mapped to quantum many-body interactions lead to different spin adapted basis states, which may correspond to different realistic systems upon the breakdown of spin degeneracy. This work highlights the hierarchical symmetry of the tensorial structure of quantum many-body systems, which may facilitate a better understanding of the structure property relationship toward the object-oriented materials design.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The structure and symmetry of modular state space for complex quantum systems.\",\"authors\":\"Guohua Tao\",\"doi\":\"10.1063/5.0245447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the state space structure of complex quantum systems can help to effectively characterize the system properties and explore underlying mechanisms. The structure of the state space could be quite complicated for quantum many-body systems, and the systematic decomposition of the state space is normally involved. Recently, a modular tensor diagram approach was proposed to reorganize the state space hierarchically based on a modular basis. Here, we review the construction of spin eigenfunctions for multiple exciton systems and further develop modular tensor diagrams to exemplify the hierarchical symmetry of the state space. The newly constructed spin eigenfunctions for quadruple excitons, along with the results for triple excitons, are used to demonstrate the effective decomposition of the state space into hierarchical tensorial structures. A universal recursive relation is derived to determine the coefficients of spin eigenfunctions exhibiting transformation symmetry between different classes of elementary modules for an arbitrary number of exciton units. Interestingly, different coupling schemes mapped to quantum many-body interactions lead to different spin adapted basis states, which may correspond to different realistic systems upon the breakdown of spin degeneracy. This work highlights the hierarchical symmetry of the tensorial structure of quantum many-body systems, which may facilitate a better understanding of the structure property relationship toward the object-oriented materials design.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 11\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0245447\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0245447","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

理解复杂量子系统的状态空间结构有助于有效地表征系统性质和探索其潜在机制。量子多体系统的状态空间结构非常复杂,通常涉及到状态空间的系统分解。最近,提出了一种基于模块化基础的模张量图方法对状态空间进行分层重组。在这里,我们回顾了多激子系统的自旋本征函数的构造,并进一步发展了模张量图来举例说明状态空间的层次对称性。利用新构造的四重激子自旋本征函数和三重激子的结果,证明了态空间有效分解为层次张量结构。对于任意数量的激子单元,导出了一种通用递推关系来确定在不同类型的基本模之间表现出变换对称性的自旋本征函数的系数。有趣的是,不同的耦合方案映射到量子多体相互作用会导致不同的自旋适应基态,这可能对应于自旋简并破坏后不同的现实系统。这项工作突出了量子多体系统张量结构的层次对称性,这可能有助于更好地理解面向对象材料设计的结构性质关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The structure and symmetry of modular state space for complex quantum systems.

Understanding the state space structure of complex quantum systems can help to effectively characterize the system properties and explore underlying mechanisms. The structure of the state space could be quite complicated for quantum many-body systems, and the systematic decomposition of the state space is normally involved. Recently, a modular tensor diagram approach was proposed to reorganize the state space hierarchically based on a modular basis. Here, we review the construction of spin eigenfunctions for multiple exciton systems and further develop modular tensor diagrams to exemplify the hierarchical symmetry of the state space. The newly constructed spin eigenfunctions for quadruple excitons, along with the results for triple excitons, are used to demonstrate the effective decomposition of the state space into hierarchical tensorial structures. A universal recursive relation is derived to determine the coefficients of spin eigenfunctions exhibiting transformation symmetry between different classes of elementary modules for an arbitrary number of exciton units. Interestingly, different coupling schemes mapped to quantum many-body interactions lead to different spin adapted basis states, which may correspond to different realistic systems upon the breakdown of spin degeneracy. This work highlights the hierarchical symmetry of the tensorial structure of quantum many-body systems, which may facilitate a better understanding of the structure property relationship toward the object-oriented materials design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信