交换相关泛函的选择如何影响基于dft的水合电子模拟。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
William R Borrelli, Xiaoyan Liu, Benjamin J Schwartz
{"title":"交换相关泛函的选择如何影响基于dft的水合电子模拟。","authors":"William R Borrelli, Xiaoyan Liu, Benjamin J Schwartz","doi":"10.1063/5.0253369","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrated electrons are anionic species that are formed when an excess electron is introduced into liquid water. Building an understanding of how hydrated electrons behave in solution has been a long-standing effort of simulation methods, of which density functional theory (DFT) has come to the fore in recent years. The ability of DFT to model the reactive chemistry of hydrated electrons is an attractive advantage over semi-classical methodologies; however, relatively few density functional approximations (DFAs) have been used for the hydrated electron simulations presented in the literature. Here, we simulate hydrated electron systems using a series of exchange-correlation (XC) functionals spanning Jacob's ladder. We calculate a variety of experimental and other observables of the hydrated electron and compare the XC functional dependence for each quantity. We find that the formation of a stable localized hydrated electron is not necessarily limited to hybrid XC functionals and that some hybrid functionals produce delocalized hydrated electrons or electrons that react with the surrounding water at an unphysically fast rate. We further characterize how different DFAs impact the solvent structure and predicted spectroscopy of the hydrated electron, considering several methods for calculating the hydrated electron's absorption spectrum for the best comparison between structures generated using different density functionals. None of the dozen or so DFAs that we investigated are able to correctly predict the hydrated electron's spectroscopy, vertical detachment energy, or molar solvation volume.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How the choice of exchange-correlation functional affects DFT-based simulations of the hydrated electron.\",\"authors\":\"William R Borrelli, Xiaoyan Liu, Benjamin J Schwartz\",\"doi\":\"10.1063/5.0253369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrated electrons are anionic species that are formed when an excess electron is introduced into liquid water. Building an understanding of how hydrated electrons behave in solution has been a long-standing effort of simulation methods, of which density functional theory (DFT) has come to the fore in recent years. The ability of DFT to model the reactive chemistry of hydrated electrons is an attractive advantage over semi-classical methodologies; however, relatively few density functional approximations (DFAs) have been used for the hydrated electron simulations presented in the literature. Here, we simulate hydrated electron systems using a series of exchange-correlation (XC) functionals spanning Jacob's ladder. We calculate a variety of experimental and other observables of the hydrated electron and compare the XC functional dependence for each quantity. We find that the formation of a stable localized hydrated electron is not necessarily limited to hybrid XC functionals and that some hybrid functionals produce delocalized hydrated electrons or electrons that react with the surrounding water at an unphysically fast rate. We further characterize how different DFAs impact the solvent structure and predicted spectroscopy of the hydrated electron, considering several methods for calculating the hydrated electron's absorption spectrum for the best comparison between structures generated using different density functionals. None of the dozen or so DFAs that we investigated are able to correctly predict the hydrated electron's spectroscopy, vertical detachment energy, or molar solvation volume.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 11\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0253369\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0253369","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水合电子是当一个多余的电子被引入液态水时形成的阴离子。建立对水合电子在溶液中的行为的理解一直是模拟方法的长期努力,其中密度泛函理论(DFT)近年来已崭露头角。与半经典方法相比,DFT模拟水合电子反应化学的能力是一个有吸引力的优势;然而,相对较少的密度泛函近似(dfa)已用于文献中提出的水合电子模拟。在这里,我们使用一系列跨越雅各布阶梯的交换相关(XC)泛函来模拟水合电子系统。我们计算了水合电子的各种实验和其他观测值,并比较了每个量的XC函数依赖性。我们发现一个稳定的局域水合电子的形成并不一定局限于杂化XC官能团,一些杂化官能团产生离域水合电子或电子以非物理的快速度与周围的水反应。我们进一步表征了不同的dfa如何影响溶剂结构和水合电子的预测光谱,考虑了几种计算水合电子吸收光谱的方法,以便在使用不同密度泛函生成的结构之间进行最佳比较。我们所研究的十几个dfa中没有一个能够正确预测水合电子能谱、垂直分离能或摩尔溶剂化体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How the choice of exchange-correlation functional affects DFT-based simulations of the hydrated electron.

Hydrated electrons are anionic species that are formed when an excess electron is introduced into liquid water. Building an understanding of how hydrated electrons behave in solution has been a long-standing effort of simulation methods, of which density functional theory (DFT) has come to the fore in recent years. The ability of DFT to model the reactive chemistry of hydrated electrons is an attractive advantage over semi-classical methodologies; however, relatively few density functional approximations (DFAs) have been used for the hydrated electron simulations presented in the literature. Here, we simulate hydrated electron systems using a series of exchange-correlation (XC) functionals spanning Jacob's ladder. We calculate a variety of experimental and other observables of the hydrated electron and compare the XC functional dependence for each quantity. We find that the formation of a stable localized hydrated electron is not necessarily limited to hybrid XC functionals and that some hybrid functionals produce delocalized hydrated electrons or electrons that react with the surrounding water at an unphysically fast rate. We further characterize how different DFAs impact the solvent structure and predicted spectroscopy of the hydrated electron, considering several methods for calculating the hydrated electron's absorption spectrum for the best comparison between structures generated using different density functionals. None of the dozen or so DFAs that we investigated are able to correctly predict the hydrated electron's spectroscopy, vertical detachment energy, or molar solvation volume.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信