硼基 B3Zn6- 合金簇是棱柱形结构和三明治状结构的混合体:利用电子嬗变稳定线性 B3 链图案。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Fang-Lin Liu, Shu-Juan Gao, Hua-Jin Zhai
{"title":"硼基 B3Zn6- 合金簇是棱柱形结构和三明治状结构的混合体:利用电子嬗变稳定线性 B3 链图案。","authors":"Fang-Lin Liu, Shu-Juan Gao, Hua-Jin Zhai","doi":"10.1063/5.0257359","DOIUrl":null,"url":null,"abstract":"<p><p>Doping boron clusters with metallic elements can tune the structural, electronic, and bonding properties. We report on the computational design of a zinc-rich D3h (1A1') B3Zn6- alloy cluster, whose global-minimum structure is a hybrid between prismatic, sandwich-like, and core-shell tubular geometries. The binary cluster features a linear B3 chain along its C3 axis, as well as three lateral Zn-Zn dimers, in which a central B atom is sandwiched by two quasi-planar BZn3 units in an eclipsed form. Chemical bonding analyses show that the B3 chain motif has Lewis-type B-B σ single bonds and a pair of orthogonal three-center two-electron (3c-2e) π bonds, collectively leading to a B-B bond order of two. Stabilizing a boron single chain is scarce in the literature, as is observing a series of double B=B bonds in a monoatomic chain fashion. The triangular pyramid BZn3 units are each in a unique triplet σ2σ*1σ*1 configuration, thus rendering σ aromaticity to the cluster according to the reversed 4n Hückel rule. It is proposed that the alloy cluster can be rationalized using the concept of electronic transmutation, wherein a close chemical analogy to the carbon dioxide (CO2) molecule is established.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron-based B3Zn6- alloy cluster as a hybrid between prismatic and sandwich-like structures: Stabilization of a linear B3 chain motif using electronic transmutation.\",\"authors\":\"Fang-Lin Liu, Shu-Juan Gao, Hua-Jin Zhai\",\"doi\":\"10.1063/5.0257359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doping boron clusters with metallic elements can tune the structural, electronic, and bonding properties. We report on the computational design of a zinc-rich D3h (1A1') B3Zn6- alloy cluster, whose global-minimum structure is a hybrid between prismatic, sandwich-like, and core-shell tubular geometries. The binary cluster features a linear B3 chain along its C3 axis, as well as three lateral Zn-Zn dimers, in which a central B atom is sandwiched by two quasi-planar BZn3 units in an eclipsed form. Chemical bonding analyses show that the B3 chain motif has Lewis-type B-B σ single bonds and a pair of orthogonal three-center two-electron (3c-2e) π bonds, collectively leading to a B-B bond order of two. Stabilizing a boron single chain is scarce in the literature, as is observing a series of double B=B bonds in a monoatomic chain fashion. The triangular pyramid BZn3 units are each in a unique triplet σ2σ*1σ*1 configuration, thus rendering σ aromaticity to the cluster according to the reversed 4n Hückel rule. It is proposed that the alloy cluster can be rationalized using the concept of electronic transmutation, wherein a close chemical analogy to the carbon dioxide (CO2) molecule is established.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 11\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0257359\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0257359","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boron-based B3Zn6- alloy cluster as a hybrid between prismatic and sandwich-like structures: Stabilization of a linear B3 chain motif using electronic transmutation.

Doping boron clusters with metallic elements can tune the structural, electronic, and bonding properties. We report on the computational design of a zinc-rich D3h (1A1') B3Zn6- alloy cluster, whose global-minimum structure is a hybrid between prismatic, sandwich-like, and core-shell tubular geometries. The binary cluster features a linear B3 chain along its C3 axis, as well as three lateral Zn-Zn dimers, in which a central B atom is sandwiched by two quasi-planar BZn3 units in an eclipsed form. Chemical bonding analyses show that the B3 chain motif has Lewis-type B-B σ single bonds and a pair of orthogonal three-center two-electron (3c-2e) π bonds, collectively leading to a B-B bond order of two. Stabilizing a boron single chain is scarce in the literature, as is observing a series of double B=B bonds in a monoatomic chain fashion. The triangular pyramid BZn3 units are each in a unique triplet σ2σ*1σ*1 configuration, thus rendering σ aromaticity to the cluster according to the reversed 4n Hückel rule. It is proposed that the alloy cluster can be rationalized using the concept of electronic transmutation, wherein a close chemical analogy to the carbon dioxide (CO2) molecule is established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信