Chenkai Li, Darcy Sutherland, Ali Salehi, Amelia Richter, Diana Lin, Sambina Islam Aninta, Hossein Ebrahimikondori, Anat Yanai, Lauren Coombe, René L Warren, Monica Kotkoff, Linda M N Hoang, Caren C Helbing, Inanc Birol
{"title":"挖掘UniProtKB/Swiss-Prot抗菌肽数据库。","authors":"Chenkai Li, Darcy Sutherland, Ali Salehi, Amelia Richter, Diana Lin, Sambina Islam Aninta, Hossein Ebrahimikondori, Anat Yanai, Lauren Coombe, René L Warren, Monica Kotkoff, Linda M N Hoang, Caren C Helbing, Inanc Birol","doi":"10.1002/pro.70083","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-growing global health threat of antibiotic resistance is compelling researchers to explore alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) are emerging as a promising solution to fill this need. Naturally occurring AMPs are produced by all forms of life as part of the innate immune system. High-throughput bioinformatics tools have enabled fast and large-scale discovery of AMPs from genomic, transcriptomic, and proteomic resources of selected organisms. Public protein sequence databases, comprising over 200 million records and growing, serve as comprehensive compendia of sequences from a broad range of source organisms. Yet, large-scale in silico probing of those databases for novel AMP discovery using modern deep learning techniques has rarely been reported. In the present study, we propose an AMP mining workflow to predict novel AMPs from the UniProtKB/Swiss-Prot database using the AMP prediction tool, AMPlify, as its discovery engine. Using this workflow, we identified 8008 novel putative AMPs from all eukaryotic sequences in the database. Focusing on the practical use of AMPs as suitable antimicrobial agents with applications in the poultry industry, we prioritized 40 of those AMPs based on their similarities to known chicken AMPs in predicted structures. In our tests, 13 out of the 38 successfully synthesized peptides showed antimicrobial activity against Escherichia coli and/or Staphylococcus aureus. AMPlify and the companion scripts supporting the AMP mining workflow presented herein are publicly available at https://github.com/bcgsc/AMPlify.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70083"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917140/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mining the UniProtKB/Swiss-Prot database for antimicrobial peptides.\",\"authors\":\"Chenkai Li, Darcy Sutherland, Ali Salehi, Amelia Richter, Diana Lin, Sambina Islam Aninta, Hossein Ebrahimikondori, Anat Yanai, Lauren Coombe, René L Warren, Monica Kotkoff, Linda M N Hoang, Caren C Helbing, Inanc Birol\",\"doi\":\"10.1002/pro.70083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ever-growing global health threat of antibiotic resistance is compelling researchers to explore alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) are emerging as a promising solution to fill this need. Naturally occurring AMPs are produced by all forms of life as part of the innate immune system. High-throughput bioinformatics tools have enabled fast and large-scale discovery of AMPs from genomic, transcriptomic, and proteomic resources of selected organisms. Public protein sequence databases, comprising over 200 million records and growing, serve as comprehensive compendia of sequences from a broad range of source organisms. Yet, large-scale in silico probing of those databases for novel AMP discovery using modern deep learning techniques has rarely been reported. In the present study, we propose an AMP mining workflow to predict novel AMPs from the UniProtKB/Swiss-Prot database using the AMP prediction tool, AMPlify, as its discovery engine. Using this workflow, we identified 8008 novel putative AMPs from all eukaryotic sequences in the database. Focusing on the practical use of AMPs as suitable antimicrobial agents with applications in the poultry industry, we prioritized 40 of those AMPs based on their similarities to known chicken AMPs in predicted structures. In our tests, 13 out of the 38 successfully synthesized peptides showed antimicrobial activity against Escherichia coli and/or Staphylococcus aureus. AMPlify and the companion scripts supporting the AMP mining workflow presented herein are publicly available at https://github.com/bcgsc/AMPlify.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 4\",\"pages\":\"e70083\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917140/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70083\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70083","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mining the UniProtKB/Swiss-Prot database for antimicrobial peptides.
The ever-growing global health threat of antibiotic resistance is compelling researchers to explore alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) are emerging as a promising solution to fill this need. Naturally occurring AMPs are produced by all forms of life as part of the innate immune system. High-throughput bioinformatics tools have enabled fast and large-scale discovery of AMPs from genomic, transcriptomic, and proteomic resources of selected organisms. Public protein sequence databases, comprising over 200 million records and growing, serve as comprehensive compendia of sequences from a broad range of source organisms. Yet, large-scale in silico probing of those databases for novel AMP discovery using modern deep learning techniques has rarely been reported. In the present study, we propose an AMP mining workflow to predict novel AMPs from the UniProtKB/Swiss-Prot database using the AMP prediction tool, AMPlify, as its discovery engine. Using this workflow, we identified 8008 novel putative AMPs from all eukaryotic sequences in the database. Focusing on the practical use of AMPs as suitable antimicrobial agents with applications in the poultry industry, we prioritized 40 of those AMPs based on their similarities to known chicken AMPs in predicted structures. In our tests, 13 out of the 38 successfully synthesized peptides showed antimicrobial activity against Escherichia coli and/or Staphylococcus aureus. AMPlify and the companion scripts supporting the AMP mining workflow presented herein are publicly available at https://github.com/bcgsc/AMPlify.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).