绵羊瘤胃微生物群的纤维素酶增强表明,典型草原上的绵羊对季节性饮食变化有可塑性反应。

IF 4 2区 生物学 Q2 MICROBIOLOGY
Hairen Shi, Pei Guo, Zhen Wang, Jieyan Zhou, Meiyue He, Liyuan Shi, Xiaojuan Huang, Penghui Guo, Zhaoxia Guo, Yuwen Zhang, Fujiang Hou
{"title":"绵羊瘤胃微生物群的纤维素酶增强表明,典型草原上的绵羊对季节性饮食变化有可塑性反应。","authors":"Hairen Shi, Pei Guo, Zhen Wang, Jieyan Zhou, Meiyue He, Liyuan Shi, Xiaojuan Huang, Penghui Guo, Zhaoxia Guo, Yuwen Zhang, Fujiang Hou","doi":"10.1186/s12866-025-03799-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Climate and geographical changes significantly influence food availability and nutrient composition over time and space, Which in turn affects the selection of microbial communities essential for maintaining gastrointestinal homeostasis and facilitating dietary adaptation. Therefore, it is essential to understand the specific responses of the gut microbiota to dietary and seasonal variations in order to improve animal conservation strategies based on solid scientific knowledge.</p><p><strong>Results: </strong>In summer, due to the higher nutritional quality of forage, Tan sheep exhibited enhanced forage degradation and fermentation. This was reflected by increased populations of key rumen bacteria, including Bacteroidetes, Prevotella_1, Prevotellaceae_UCG-003, Ruminococcus_1, Saccharofermentans, and Ruminococcaceae_UCG-014. Supplementation with cellulase further facilitated these processes, optimizing the utilization of available nutrients. In contrast, during winter, when the nutritional quality of forage decline, we observed lower indicators of forage degradation and fermentation in Tan sheep. Additionally, there was a significant increase in the Firmicutes/Bacteroidetes ratio, microbial diversity, microbial interactions, and metabolic activity.</p><p><strong>Conclusions: </strong>The rumen microbiota adapts to enhance the breakdown of forage biomass and maintain energy balance during periods of inadequate nutritional value. Supplementing the diet with cellulase during these times can help mitigate the reduced digestibility associated with low-quality forage. This study highlights the dynamic adaptation of the rumen microbiota to seasonal variations in forage quality and emphasizes the potential benefits of cellulase supplementation in supporting rumen function and improving animal performance under varying environmental conditions.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"154"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulase enhancing rumen microbiome of Tan sheep indicates plastic responses to seasonal variations of diet in the typical steppe.\",\"authors\":\"Hairen Shi, Pei Guo, Zhen Wang, Jieyan Zhou, Meiyue He, Liyuan Shi, Xiaojuan Huang, Penghui Guo, Zhaoxia Guo, Yuwen Zhang, Fujiang Hou\",\"doi\":\"10.1186/s12866-025-03799-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Climate and geographical changes significantly influence food availability and nutrient composition over time and space, Which in turn affects the selection of microbial communities essential for maintaining gastrointestinal homeostasis and facilitating dietary adaptation. Therefore, it is essential to understand the specific responses of the gut microbiota to dietary and seasonal variations in order to improve animal conservation strategies based on solid scientific knowledge.</p><p><strong>Results: </strong>In summer, due to the higher nutritional quality of forage, Tan sheep exhibited enhanced forage degradation and fermentation. This was reflected by increased populations of key rumen bacteria, including Bacteroidetes, Prevotella_1, Prevotellaceae_UCG-003, Ruminococcus_1, Saccharofermentans, and Ruminococcaceae_UCG-014. Supplementation with cellulase further facilitated these processes, optimizing the utilization of available nutrients. In contrast, during winter, when the nutritional quality of forage decline, we observed lower indicators of forage degradation and fermentation in Tan sheep. Additionally, there was a significant increase in the Firmicutes/Bacteroidetes ratio, microbial diversity, microbial interactions, and metabolic activity.</p><p><strong>Conclusions: </strong>The rumen microbiota adapts to enhance the breakdown of forage biomass and maintain energy balance during periods of inadequate nutritional value. Supplementing the diet with cellulase during these times can help mitigate the reduced digestibility associated with low-quality forage. This study highlights the dynamic adaptation of the rumen microbiota to seasonal variations in forage quality and emphasizes the potential benefits of cellulase supplementation in supporting rumen function and improving animal performance under varying environmental conditions.</p>\",\"PeriodicalId\":9233,\"journal\":{\"name\":\"BMC Microbiology\",\"volume\":\"25 1\",\"pages\":\"154\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12866-025-03799-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03799-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellulase enhancing rumen microbiome of Tan sheep indicates plastic responses to seasonal variations of diet in the typical steppe.

Background: Climate and geographical changes significantly influence food availability and nutrient composition over time and space, Which in turn affects the selection of microbial communities essential for maintaining gastrointestinal homeostasis and facilitating dietary adaptation. Therefore, it is essential to understand the specific responses of the gut microbiota to dietary and seasonal variations in order to improve animal conservation strategies based on solid scientific knowledge.

Results: In summer, due to the higher nutritional quality of forage, Tan sheep exhibited enhanced forage degradation and fermentation. This was reflected by increased populations of key rumen bacteria, including Bacteroidetes, Prevotella_1, Prevotellaceae_UCG-003, Ruminococcus_1, Saccharofermentans, and Ruminococcaceae_UCG-014. Supplementation with cellulase further facilitated these processes, optimizing the utilization of available nutrients. In contrast, during winter, when the nutritional quality of forage decline, we observed lower indicators of forage degradation and fermentation in Tan sheep. Additionally, there was a significant increase in the Firmicutes/Bacteroidetes ratio, microbial diversity, microbial interactions, and metabolic activity.

Conclusions: The rumen microbiota adapts to enhance the breakdown of forage biomass and maintain energy balance during periods of inadequate nutritional value. Supplementing the diet with cellulase during these times can help mitigate the reduced digestibility associated with low-quality forage. This study highlights the dynamic adaptation of the rumen microbiota to seasonal variations in forage quality and emphasizes the potential benefits of cellulase supplementation in supporting rumen function and improving animal performance under varying environmental conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信