Algin Oh Biying, Sabrina Trano, Yi Jie Eng, Gabriele Lingua, Haritz Sardon, David Mecerreyes, Julian M W Chan
{"title":"将商品泡沫聚苯乙烯升级为氧化还原聚合物基电极。","authors":"Algin Oh Biying, Sabrina Trano, Yi Jie Eng, Gabriele Lingua, Haritz Sardon, David Mecerreyes, Julian M W Chan","doi":"10.1002/cssc.202500092","DOIUrl":null,"url":null,"abstract":"<p><p>Commodity polystyrene from styrofoam food boxes was chemically transformed into redox-active organic polymers via a two-step functionalization sequence. In the first step, controlled chloromethylation of the pendent phenyl rings was used to functionalize 30-50 % of the polymer chain. The degree of functionalization could be tuned by simply varying the reaction time (1-3 h). Next, phenothiazine or nitroxide radical moieties were introduced via nucleophilic displacement of the benzylic chlorides to afford polymers with redox-active pendent sidechains. These phenothiazine and TEMPO-functionalized polymers were then characterized electrochemically to demonstrate their redox properties and evaluate their performance as battery electrodes. Overall, this process serves as proof-of-concept for the rapid conversion of consumer-grade styrofoam into redox-active polymers with the potential to serve as metal-free electrodes in organic batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500092"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycling Commodity Styrofoam into Redox Polymer-based Electrodes.\",\"authors\":\"Algin Oh Biying, Sabrina Trano, Yi Jie Eng, Gabriele Lingua, Haritz Sardon, David Mecerreyes, Julian M W Chan\",\"doi\":\"10.1002/cssc.202500092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Commodity polystyrene from styrofoam food boxes was chemically transformed into redox-active organic polymers via a two-step functionalization sequence. In the first step, controlled chloromethylation of the pendent phenyl rings was used to functionalize 30-50 % of the polymer chain. The degree of functionalization could be tuned by simply varying the reaction time (1-3 h). Next, phenothiazine or nitroxide radical moieties were introduced via nucleophilic displacement of the benzylic chlorides to afford polymers with redox-active pendent sidechains. These phenothiazine and TEMPO-functionalized polymers were then characterized electrochemically to demonstrate their redox properties and evaluate their performance as battery electrodes. Overall, this process serves as proof-of-concept for the rapid conversion of consumer-grade styrofoam into redox-active polymers with the potential to serve as metal-free electrodes in organic batteries.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500092\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500092\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500092","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Upcycling Commodity Styrofoam into Redox Polymer-based Electrodes.
Commodity polystyrene from styrofoam food boxes was chemically transformed into redox-active organic polymers via a two-step functionalization sequence. In the first step, controlled chloromethylation of the pendent phenyl rings was used to functionalize 30-50 % of the polymer chain. The degree of functionalization could be tuned by simply varying the reaction time (1-3 h). Next, phenothiazine or nitroxide radical moieties were introduced via nucleophilic displacement of the benzylic chlorides to afford polymers with redox-active pendent sidechains. These phenothiazine and TEMPO-functionalized polymers were then characterized electrochemically to demonstrate their redox properties and evaluate their performance as battery electrodes. Overall, this process serves as proof-of-concept for the rapid conversion of consumer-grade styrofoam into redox-active polymers with the potential to serve as metal-free electrodes in organic batteries.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology