记忆神经形态接口:将感觉模式与人工神经网络整合。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ji Eun Kim, Keunho Soh, Su In Hwang, Do Young Yang, Jung Ho Yoon
{"title":"记忆神经形态接口:将感觉模式与人工神经网络整合。","authors":"Ji Eun Kim, Keunho Soh, Su In Hwang, Do Young Yang, Jung Ho Yoon","doi":"10.1039/d5mh00038f","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of the Internet of Things (IoT) has led to exponential growth in data generated from sensors, requiring efficient methods to process complex and unstructured external information. Unlike conventional von Neumann sensory systems with separate data collection and processing units, biological sensory systems integrate sensing, memory, and computing to process environmental information in real time with high efficiency. Memristive neuromorphic sensory systems using memristors as their basic components have emerged as promising alternatives to CMOS-based systems. Memristors can closely replicate the key characteristics of biological receptors, neurons, and synapses by integrating the threshold and adaptation properties of receptors, the action potential firing in neurons, and the synaptic plasticity of synapses. Furthermore, through careful engineering of their switching dynamics, the electrical properties of memristors can be tailored to emulate specific functions, while benefiting from high operational speed, low power consumption, and exceptional scalability. Consequently, their integration with high-performance sensors offers a promising pathway toward realizing fully integrated artificial sensory systems that can efficiently process and respond to diverse environmental stimuli in real time. In this review, we first introduce the fundamental principles of memristive neuromorphic technologies for artificial sensory systems, explaining how each component is structured and what functions it performs. We then discuss how these principles can be applied to replicate the four traditional senses, highlighting the underlying mechanisms and recent advances in mimicking biological sensory functions. Finally, we address the remaining challenges and provide prospects for the continued development of memristor-based artificial sensory systems.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memristive neuromorphic interfaces: integrating sensory modalities with artificial neural networks.\",\"authors\":\"Ji Eun Kim, Keunho Soh, Su In Hwang, Do Young Yang, Jung Ho Yoon\",\"doi\":\"10.1039/d5mh00038f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advent of the Internet of Things (IoT) has led to exponential growth in data generated from sensors, requiring efficient methods to process complex and unstructured external information. Unlike conventional von Neumann sensory systems with separate data collection and processing units, biological sensory systems integrate sensing, memory, and computing to process environmental information in real time with high efficiency. Memristive neuromorphic sensory systems using memristors as their basic components have emerged as promising alternatives to CMOS-based systems. Memristors can closely replicate the key characteristics of biological receptors, neurons, and synapses by integrating the threshold and adaptation properties of receptors, the action potential firing in neurons, and the synaptic plasticity of synapses. Furthermore, through careful engineering of their switching dynamics, the electrical properties of memristors can be tailored to emulate specific functions, while benefiting from high operational speed, low power consumption, and exceptional scalability. Consequently, their integration with high-performance sensors offers a promising pathway toward realizing fully integrated artificial sensory systems that can efficiently process and respond to diverse environmental stimuli in real time. In this review, we first introduce the fundamental principles of memristive neuromorphic technologies for artificial sensory systems, explaining how each component is structured and what functions it performs. We then discuss how these principles can be applied to replicate the four traditional senses, highlighting the underlying mechanisms and recent advances in mimicking biological sensory functions. Finally, we address the remaining challenges and provide prospects for the continued development of memristor-based artificial sensory systems.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00038f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00038f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)的出现导致传感器产生的数据呈指数级增长,需要有效的方法来处理复杂和非结构化的外部信息。与传统的冯诺依曼传感系统不同,生物传感系统将传感、记忆和计算集成在一起,以高效的方式实时处理环境信息。以忆阻器为基本元件的记忆神经形态感觉系统已成为基于cmos系统的有希望的替代品。忆阻器通过整合受体的阈值和适应特性、神经元的动作电位放电以及突触的突触可塑性,可以紧密复制生物受体、神经元和突触的关键特性。此外,通过仔细设计其开关动力学,可以定制忆阻器的电学特性以模拟特定功能,同时受益于高运行速度,低功耗和卓越的可扩展性。因此,它们与高性能传感器的集成为实现完全集成的人工感官系统提供了一条有希望的途径,该系统可以实时有效地处理和响应各种环境刺激。在这篇综述中,我们首先介绍了记忆神经形态技术在人工感觉系统中的基本原理,解释了每个组件的结构和功能。然后,我们讨论了如何将这些原理应用于复制四种传统感官,强调了模仿生物感官功能的潜在机制和最新进展。最后,我们提出了仍然存在的挑战,并为基于记忆阻器的人工感觉系统的持续发展提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memristive neuromorphic interfaces: integrating sensory modalities with artificial neural networks.

The advent of the Internet of Things (IoT) has led to exponential growth in data generated from sensors, requiring efficient methods to process complex and unstructured external information. Unlike conventional von Neumann sensory systems with separate data collection and processing units, biological sensory systems integrate sensing, memory, and computing to process environmental information in real time with high efficiency. Memristive neuromorphic sensory systems using memristors as their basic components have emerged as promising alternatives to CMOS-based systems. Memristors can closely replicate the key characteristics of biological receptors, neurons, and synapses by integrating the threshold and adaptation properties of receptors, the action potential firing in neurons, and the synaptic plasticity of synapses. Furthermore, through careful engineering of their switching dynamics, the electrical properties of memristors can be tailored to emulate specific functions, while benefiting from high operational speed, low power consumption, and exceptional scalability. Consequently, their integration with high-performance sensors offers a promising pathway toward realizing fully integrated artificial sensory systems that can efficiently process and respond to diverse environmental stimuli in real time. In this review, we first introduce the fundamental principles of memristive neuromorphic technologies for artificial sensory systems, explaining how each component is structured and what functions it performs. We then discuss how these principles can be applied to replicate the four traditional senses, highlighting the underlying mechanisms and recent advances in mimicking biological sensory functions. Finally, we address the remaining challenges and provide prospects for the continued development of memristor-based artificial sensory systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信