功能石墨材料在生物医学和人类健康应用中的作用和未来。

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2025-04-14 Epub Date: 2025-03-18 DOI:10.1021/acs.biomac.4c01431
Anne M Arnold, Juhi Singh, Stefanie A Sydlik
{"title":"功能石墨材料在生物医学和人类健康应用中的作用和未来。","authors":"Anne M Arnold, Juhi Singh, Stefanie A Sydlik","doi":"10.1021/acs.biomac.4c01431","DOIUrl":null,"url":null,"abstract":"<p><p>Functional graphenic materials (FGMs) are materials derived from graphene oxide (GO) that hold a plethora of applications from electronics to nanomedicine. In this Perspective, we examine the history and evolution of biomedical applications of this carbon-based macromolecule. Following the carbon nanotube (CNT) movement, GO and FGMs became nanocarbons of interest because of their low cost and versatile functionality. The tunable chemistry enabled our work on FGMs coupled with biomacromolecules and allows FGMs to plays an important role in many biomedical applications, from tissue regeneration to controlled delivery. As we work to develop this material, it is critical to consider toxicity implications─in fresh materials as well as in degradation products. With this understanding, FGMs also hold potential roles in human health and environmental sustainability, making FGMs an important contemporary biomacromolecule.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"2015-2042"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12004540/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role and Future of Functional Graphenic Materials in Biomedical and Human Health Applications.\",\"authors\":\"Anne M Arnold, Juhi Singh, Stefanie A Sydlik\",\"doi\":\"10.1021/acs.biomac.4c01431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional graphenic materials (FGMs) are materials derived from graphene oxide (GO) that hold a plethora of applications from electronics to nanomedicine. In this Perspective, we examine the history and evolution of biomedical applications of this carbon-based macromolecule. Following the carbon nanotube (CNT) movement, GO and FGMs became nanocarbons of interest because of their low cost and versatile functionality. The tunable chemistry enabled our work on FGMs coupled with biomacromolecules and allows FGMs to plays an important role in many biomedical applications, from tissue regeneration to controlled delivery. As we work to develop this material, it is critical to consider toxicity implications─in fresh materials as well as in degradation products. With this understanding, FGMs also hold potential roles in human health and environmental sustainability, making FGMs an important contemporary biomacromolecule.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"2015-2042\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12004540/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c01431\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01431","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

功能石墨材料(fgm)是从氧化石墨烯(GO)衍生出来的材料,具有从电子到纳米医学的大量应用。从这个角度来看,我们研究了这种碳基高分子生物医学应用的历史和演变。继碳纳米管(CNT)运动之后,氧化石墨烯和fgm因其低成本和多功能而成为人们感兴趣的纳米碳。可调化学使我们的研究工作能够与生物大分子结合,并使女性生殖细胞在许多生物医学应用中发挥重要作用,从组织再生到控制输送。当我们努力开发这种材料时,考虑其毒性是至关重要的──无论是在新鲜材料中还是在降解产物中。有了这样的认识,女性生殖器切割在人类健康和环境可持续性方面也具有潜在的作用,使女性生殖器切割成为重要的当代生物大分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role and Future of Functional Graphenic Materials in Biomedical and Human Health Applications.

Functional graphenic materials (FGMs) are materials derived from graphene oxide (GO) that hold a plethora of applications from electronics to nanomedicine. In this Perspective, we examine the history and evolution of biomedical applications of this carbon-based macromolecule. Following the carbon nanotube (CNT) movement, GO and FGMs became nanocarbons of interest because of their low cost and versatile functionality. The tunable chemistry enabled our work on FGMs coupled with biomacromolecules and allows FGMs to plays an important role in many biomedical applications, from tissue regeneration to controlled delivery. As we work to develop this material, it is critical to consider toxicity implications─in fresh materials as well as in degradation products. With this understanding, FGMs also hold potential roles in human health and environmental sustainability, making FGMs an important contemporary biomacromolecule.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信