四足机器人专用弹性腿关节设计与实验研究

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Zisen Hua, Chi Chen, Xuewen Rong, Yibin Li
{"title":"四足机器人专用弹性腿关节设计与实验研究","authors":"Zisen Hua,&nbsp;Chi Chen,&nbsp;Xuewen Rong,&nbsp;Yibin Li","doi":"10.1007/s42235-024-00640-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel passive flexible leg joint method is proposed with the aim of enhancing the impact buffering capability as well as reducing energy consumption. The innovative structure cleverly incorporates micro-plate springs, offering significant stiffness adjustment capabilities. To meet the stiffness requirements, the relationships between foot-ground contact force and the deformation force of the elastic component, as well as the influence of elastic component deformation and foot cushioning amplitude are comprehensively analyzed. With the aid of finite element optimization analysis, a single-leg experimental platform is designed, and the effectiveness and applicability of the novel structure are validated through experiments including unloaded free swinging, freely falling body motion and ground squats experiments. Comparative experiments results show the evident superiorities of the passive compliance joint.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"642 - 653"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Experimental Study of Special Elastic Leg Joint for Quadruped Robots\",\"authors\":\"Zisen Hua,&nbsp;Chi Chen,&nbsp;Xuewen Rong,&nbsp;Yibin Li\",\"doi\":\"10.1007/s42235-024-00640-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a novel passive flexible leg joint method is proposed with the aim of enhancing the impact buffering capability as well as reducing energy consumption. The innovative structure cleverly incorporates micro-plate springs, offering significant stiffness adjustment capabilities. To meet the stiffness requirements, the relationships between foot-ground contact force and the deformation force of the elastic component, as well as the influence of elastic component deformation and foot cushioning amplitude are comprehensively analyzed. With the aid of finite element optimization analysis, a single-leg experimental platform is designed, and the effectiveness and applicability of the novel structure are validated through experiments including unloaded free swinging, freely falling body motion and ground squats experiments. Comparative experiments results show the evident superiorities of the passive compliance joint.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"22 2\",\"pages\":\"642 - 653\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00640-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00640-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的被动柔性腿关节方法,以提高腿的缓冲冲击能力,降低腿的能量消耗。创新的结构巧妙地结合了微板弹簧,提供显著的刚度调节能力。为满足刚度要求,综合分析了地-地接触力与弹性构件变形力之间的关系,以及弹性构件变形和足部缓冲幅值的影响。通过有限元优化分析,设计了单腿实验平台,并通过卸载自由摆动、自由落体运动和地面深蹲实验验证了新结构的有效性和适用性。对比实验结果表明,被动柔性接头具有明显的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and Experimental Study of Special Elastic Leg Joint for Quadruped Robots

Design and Experimental Study of Special Elastic Leg Joint for Quadruped Robots

In this paper, a novel passive flexible leg joint method is proposed with the aim of enhancing the impact buffering capability as well as reducing energy consumption. The innovative structure cleverly incorporates micro-plate springs, offering significant stiffness adjustment capabilities. To meet the stiffness requirements, the relationships between foot-ground contact force and the deformation force of the elastic component, as well as the influence of elastic component deformation and foot cushioning amplitude are comprehensively analyzed. With the aid of finite element optimization analysis, a single-leg experimental platform is designed, and the effectiveness and applicability of the novel structure are validated through experiments including unloaded free swinging, freely falling body motion and ground squats experiments. Comparative experiments results show the evident superiorities of the passive compliance joint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信