一种Ti/Pt热线风速计及其用于机械通风机的SiO 2增强结构实现

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
I. R. Chávez-Urbiola, G. León-Muñoz, J. J. Alcantar-Peña, J. Ponce-Hernández, N. A. Rodríguez-Olivares, F. Jimenez-Oronia, R. Sánchez-Fraga
{"title":"一种Ti/Pt热线风速计及其用于机械通风机的SiO 2增强结构实现","authors":"I. R. Chávez-Urbiola,&nbsp;G. León-Muñoz,&nbsp;J. J. Alcantar-Peña,&nbsp;J. Ponce-Hernández,&nbsp;N. A. Rodríguez-Olivares,&nbsp;F. Jimenez-Oronia,&nbsp;R. Sánchez-Fraga","doi":"10.1007/s10765-025-03540-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the development and implementation of a microfabricated hot-wire anemometer designed for mechanical ventilators. The sensor is fabricated using MEMS techniques, incorporating a SiO₂ bridge that enhances structural integrity while enabling precise airflow measurement up to 326 lpm (63.3 m⋅s<sup>−1</sup>). The design leverages the principles of thermal anemometry, utilizing a platinum heating element with optimized mechanical support to ensure high sensitivity and durability. Performance evaluations confirm the sensor’s compliance with ISO 80601–2-12 standards for mechanical ventilators, demonstrating high stability, minimal hysteresis, and fast response times. Additionally, endurance testing validates the sensor's robustness under extreme conditions. These results highlight the potential of this hot-wire anemometer for clinical applications, providing an alternative to conventional airflow sensors with improved structural resilience and measurement accuracy.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Ti/Pt Hot Wire Anemometer and its SiO₂ Enhanced Structural Implementation for Mechanical Ventilators\",\"authors\":\"I. R. Chávez-Urbiola,&nbsp;G. León-Muñoz,&nbsp;J. J. Alcantar-Peña,&nbsp;J. Ponce-Hernández,&nbsp;N. A. Rodríguez-Olivares,&nbsp;F. Jimenez-Oronia,&nbsp;R. Sánchez-Fraga\",\"doi\":\"10.1007/s10765-025-03540-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the development and implementation of a microfabricated hot-wire anemometer designed for mechanical ventilators. The sensor is fabricated using MEMS techniques, incorporating a SiO₂ bridge that enhances structural integrity while enabling precise airflow measurement up to 326 lpm (63.3 m⋅s<sup>−1</sup>). The design leverages the principles of thermal anemometry, utilizing a platinum heating element with optimized mechanical support to ensure high sensitivity and durability. Performance evaluations confirm the sensor’s compliance with ISO 80601–2-12 standards for mechanical ventilators, demonstrating high stability, minimal hysteresis, and fast response times. Additionally, endurance testing validates the sensor's robustness under extreme conditions. These results highlight the potential of this hot-wire anemometer for clinical applications, providing an alternative to conventional airflow sensors with improved structural resilience and measurement accuracy.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-025-03540-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03540-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种设计用于机械通风机的微制造热线风速计的开发和实现。该传感器采用MEMS技术制造,采用SiO₂桥接,可增强结构完整性,同时实现高达326 lpm (63.3 m·s−1)的精确气流测量。该设计充分利用了热风速测量原理,利用具有优化机械支撑的铂加热元件,以确保高灵敏度和耐用性。性能评估证实传感器符合机械呼吸机的ISO 80601-2-12标准,具有高稳定性,最小滞后和快速响应时间。此外,耐久性测试验证了传感器在极端条件下的稳健性。这些结果突出了这种热线风速仪在临床应用中的潜力,为传统的气流传感器提供了一种替代方案,具有更好的结构弹性和测量精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Ti/Pt Hot Wire Anemometer and its SiO₂ Enhanced Structural Implementation for Mechanical Ventilators

This study presents the development and implementation of a microfabricated hot-wire anemometer designed for mechanical ventilators. The sensor is fabricated using MEMS techniques, incorporating a SiO₂ bridge that enhances structural integrity while enabling precise airflow measurement up to 326 lpm (63.3 m⋅s−1). The design leverages the principles of thermal anemometry, utilizing a platinum heating element with optimized mechanical support to ensure high sensitivity and durability. Performance evaluations confirm the sensor’s compliance with ISO 80601–2-12 standards for mechanical ventilators, demonstrating high stability, minimal hysteresis, and fast response times. Additionally, endurance testing validates the sensor's robustness under extreme conditions. These results highlight the potential of this hot-wire anemometer for clinical applications, providing an alternative to conventional airflow sensors with improved structural resilience and measurement accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信