等距张量网络状态能量优化中的无高原和梯度缩放

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Thomas Barthel, Qiang Miao
{"title":"等距张量网络状态能量优化中的无高原和梯度缩放","authors":"Thomas Barthel,&nbsp;Qiang Miao","doi":"10.1007/s00220-024-05217-x","DOIUrl":null,"url":null,"abstract":"<div><p>Vanishing gradients can pose substantial obstacles for high-dimensional optimization problems. Here we consider energy minimization problems for quantum many-body systems with extensive Hamiltonians and finite-range interactions, which can be studied on classical computers or in the form of variational quantum eigensolvers on quantum computers. Barren plateaus correspond to scenarios where the average amplitude of the energy gradient decreases exponentially with increasing system size. This occurs, for example, for quantum neural networks and for brickwall quantum circuits when the depth increases polynomially in the system size. Here we prove that the variational optimization problems for matrix product states, tree tensor networks, and the multiscale entanglement renormalization ansatz are free of barren plateaus. The derived scaling properties for the gradient variance provide an analytical guarantee for the trainability of randomly initialized tensor network states (TNS) and motivate certain initialization schemes. In a suitable representation, unitary tensors that parametrize the TNS are sampled according to the uniform Haar measure. We employ a Riemannian formulation of the gradient based optimizations which simplifies the analytical evaluation.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05217-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Absence of Barren Plateaus and Scaling of Gradients in the Energy Optimization of Isometric Tensor Network States\",\"authors\":\"Thomas Barthel,&nbsp;Qiang Miao\",\"doi\":\"10.1007/s00220-024-05217-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vanishing gradients can pose substantial obstacles for high-dimensional optimization problems. Here we consider energy minimization problems for quantum many-body systems with extensive Hamiltonians and finite-range interactions, which can be studied on classical computers or in the form of variational quantum eigensolvers on quantum computers. Barren plateaus correspond to scenarios where the average amplitude of the energy gradient decreases exponentially with increasing system size. This occurs, for example, for quantum neural networks and for brickwall quantum circuits when the depth increases polynomially in the system size. Here we prove that the variational optimization problems for matrix product states, tree tensor networks, and the multiscale entanglement renormalization ansatz are free of barren plateaus. The derived scaling properties for the gradient variance provide an analytical guarantee for the trainability of randomly initialized tensor network states (TNS) and motivate certain initialization schemes. In a suitable representation, unitary tensors that parametrize the TNS are sampled according to the uniform Haar measure. We employ a Riemannian formulation of the gradient based optimizations which simplifies the analytical evaluation.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05217-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05217-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05217-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

消失梯度会给高维优化问题带来很大的障碍。本文考虑具有广泛哈密顿量和有限范围相互作用的量子多体系统的能量最小化问题,这些问题可以在经典计算机上研究,也可以在量子计算机上以变分量子本征解的形式研究。在荒芜的高原上,能量梯度的平均振幅随着系统规模的增加呈指数递减。例如,对于量子神经网络和砖墙量子电路,当深度在系统大小中呈多项式增长时,就会发生这种情况。本文证明了矩阵积态、树张量网络和多尺度纠缠重整化分析的变分优化问题不存在贫瘠高原。导出的梯度方差标度特性为随机初始化张量网络状态(TNS)的可训练性提供了分析保证,并激发了一定的初始化方案。在一个合适的表示中,根据均匀哈尔测度对参数化TNS的酉张量进行采样。我们采用了基于梯度优化的黎曼公式,简化了分析评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absence of Barren Plateaus and Scaling of Gradients in the Energy Optimization of Isometric Tensor Network States

Vanishing gradients can pose substantial obstacles for high-dimensional optimization problems. Here we consider energy minimization problems for quantum many-body systems with extensive Hamiltonians and finite-range interactions, which can be studied on classical computers or in the form of variational quantum eigensolvers on quantum computers. Barren plateaus correspond to scenarios where the average amplitude of the energy gradient decreases exponentially with increasing system size. This occurs, for example, for quantum neural networks and for brickwall quantum circuits when the depth increases polynomially in the system size. Here we prove that the variational optimization problems for matrix product states, tree tensor networks, and the multiscale entanglement renormalization ansatz are free of barren plateaus. The derived scaling properties for the gradient variance provide an analytical guarantee for the trainability of randomly initialized tensor network states (TNS) and motivate certain initialization schemes. In a suitable representation, unitary tensors that parametrize the TNS are sampled according to the uniform Haar measure. We employ a Riemannian formulation of the gradient based optimizations which simplifies the analytical evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信