对变异链球菌铁吸收的新认识:嗜络铁分子作用的证据

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Shakti Chandra Vadhana Marimuthu, Esakkimuthu Thangamariappan, Selvaraj Kunjiappan, Sureshbabu Ram Kumar Pandian, Krishnan Sundar
{"title":"对变异链球菌铁吸收的新认识:嗜络铁分子作用的证据","authors":"Shakti Chandra Vadhana Marimuthu,&nbsp;Esakkimuthu Thangamariappan,&nbsp;Selvaraj Kunjiappan,&nbsp;Sureshbabu Ram Kumar Pandian,&nbsp;Krishnan Sundar","doi":"10.1007/s00203-025-04284-5","DOIUrl":null,"url":null,"abstract":"<div><p><i>Streptococcus mutans</i>, a gram-positive coccus commonly found in the human oral cavity, is the primary causative agent of dental caries as well as infective endocarditis. Bacteria produce potent iron chelators called siderophores to absorb iron. Because, there are few studies on siderophore-mediated iron transport in <i>S. mutans</i>, the current study investigates the presence of such a mechanism in <i>S. mutans</i> GS-5. Deferration of culture medium and different concentrations of 2, 2’-Bipyridyl has been used to simulate iron-restricted conditions. Iron restriction alters the colony morphology and slows bacterial growth. Cross-feeding conditioned medium into an iron-restricted medium promotes bacterial growth, indicating the presence of siderophore-like molecules. This was further confirmed by Chrome Azurol S (CAS) assay and Modified CAS-agar assay. Cśaky’s and Arnow’s assays detected the presence of hydroxamate and catecholate-type molecules in optimal and iron-restricted conditions, respectively. Further, the siderophore-like molecules were extracted and purified with thin layer chromatography (TLC). TLC elutes were also found to be positive for iron-chelation in CAS-agar assay and aided growth of <i>S. mutans</i> under iron-restricted conditions. LC-MS analysis of culture supernatants under iron-restricted conditions identified iron-binding small molecules, including a catechol structural motif. Computational analysis utilizing KEGG and BLASTp suggested homologues of siderophore biosynthesis and transport proteins, including genes associated with mutanobactin production. These findings indicate a possible siderophore-mediated iron uptake mechanism in <i>S. mutans</i> GS-5, warranting further molecular studies and advanced spectroscopic characterization of this unidentified siderophore. Once confirmed, this mechanism can be used as a potential drug target to control streptococcal infection.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insights into iron uptake in Streptococcus mutans: evidence for a role of siderophore-like molecules\",\"authors\":\"Shakti Chandra Vadhana Marimuthu,&nbsp;Esakkimuthu Thangamariappan,&nbsp;Selvaraj Kunjiappan,&nbsp;Sureshbabu Ram Kumar Pandian,&nbsp;Krishnan Sundar\",\"doi\":\"10.1007/s00203-025-04284-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Streptococcus mutans</i>, a gram-positive coccus commonly found in the human oral cavity, is the primary causative agent of dental caries as well as infective endocarditis. Bacteria produce potent iron chelators called siderophores to absorb iron. Because, there are few studies on siderophore-mediated iron transport in <i>S. mutans</i>, the current study investigates the presence of such a mechanism in <i>S. mutans</i> GS-5. Deferration of culture medium and different concentrations of 2, 2’-Bipyridyl has been used to simulate iron-restricted conditions. Iron restriction alters the colony morphology and slows bacterial growth. Cross-feeding conditioned medium into an iron-restricted medium promotes bacterial growth, indicating the presence of siderophore-like molecules. This was further confirmed by Chrome Azurol S (CAS) assay and Modified CAS-agar assay. Cśaky’s and Arnow’s assays detected the presence of hydroxamate and catecholate-type molecules in optimal and iron-restricted conditions, respectively. Further, the siderophore-like molecules were extracted and purified with thin layer chromatography (TLC). TLC elutes were also found to be positive for iron-chelation in CAS-agar assay and aided growth of <i>S. mutans</i> under iron-restricted conditions. LC-MS analysis of culture supernatants under iron-restricted conditions identified iron-binding small molecules, including a catechol structural motif. Computational analysis utilizing KEGG and BLASTp suggested homologues of siderophore biosynthesis and transport proteins, including genes associated with mutanobactin production. These findings indicate a possible siderophore-mediated iron uptake mechanism in <i>S. mutans</i> GS-5, warranting further molecular studies and advanced spectroscopic characterization of this unidentified siderophore. Once confirmed, this mechanism can be used as a potential drug target to control streptococcal infection.</p></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"207 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-025-04284-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04284-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

New insights into iron uptake in Streptococcus mutans: evidence for a role of siderophore-like molecules

New insights into iron uptake in Streptococcus mutans: evidence for a role of siderophore-like molecules

Streptococcus mutans, a gram-positive coccus commonly found in the human oral cavity, is the primary causative agent of dental caries as well as infective endocarditis. Bacteria produce potent iron chelators called siderophores to absorb iron. Because, there are few studies on siderophore-mediated iron transport in S. mutans, the current study investigates the presence of such a mechanism in S. mutans GS-5. Deferration of culture medium and different concentrations of 2, 2’-Bipyridyl has been used to simulate iron-restricted conditions. Iron restriction alters the colony morphology and slows bacterial growth. Cross-feeding conditioned medium into an iron-restricted medium promotes bacterial growth, indicating the presence of siderophore-like molecules. This was further confirmed by Chrome Azurol S (CAS) assay and Modified CAS-agar assay. Cśaky’s and Arnow’s assays detected the presence of hydroxamate and catecholate-type molecules in optimal and iron-restricted conditions, respectively. Further, the siderophore-like molecules were extracted and purified with thin layer chromatography (TLC). TLC elutes were also found to be positive for iron-chelation in CAS-agar assay and aided growth of S. mutans under iron-restricted conditions. LC-MS analysis of culture supernatants under iron-restricted conditions identified iron-binding small molecules, including a catechol structural motif. Computational analysis utilizing KEGG and BLASTp suggested homologues of siderophore biosynthesis and transport proteins, including genes associated with mutanobactin production. These findings indicate a possible siderophore-mediated iron uptake mechanism in S. mutans GS-5, warranting further molecular studies and advanced spectroscopic characterization of this unidentified siderophore. Once confirmed, this mechanism can be used as a potential drug target to control streptococcal infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信