调节溶剂强度可将PVC分馏成超低分子量、低分散性的材料

Ali Al Alshaikh, Jaewoo Choi, Feranmi V. Olowookere, Caira McClairen, Owen G. Lubic, Pravin S. Shinde, C. Heath Turner and Jason E. Bara
{"title":"调节溶剂强度可将PVC分馏成超低分子量、低分散性的材料","authors":"Ali Al Alshaikh, Jaewoo Choi, Feranmi V. Olowookere, Caira McClairen, Owen G. Lubic, Pravin S. Shinde, C. Heath Turner and Jason E. Bara","doi":"10.1039/D4LP00313F","DOIUrl":null,"url":null,"abstract":"<p >The drive towards a circular economy in plastic materials has become a worldwide goal. It is apparent that conventional recycling alone falls well short of achieving circularity in plastic materials due to the complex formulations of commercial products. Poly(vinyl chloride) (PVC) is a post-consumer plastic that is especially challenging to recycle mechanically. However, compared to other commodity plastics, PVC is potentially well-suited for chemical recycling, especially <em>via</em> dissolution processes that selectively remove additives. Solvent-based recycling of PVC would circumvent thermomechanical processes that cause degradation of the polymer backbone. Yet, solvent-based recycling has its own set of considerations. Recycling a “Katamari” of mixed products of unknown origins (and potentially widely varying molecular weight distributions) might yield a purified PVC product that is of low value and/or without obvious utility. Thus, solvent fractionation of the feed into two or more products of relatively narrow molecular weight distributions may be required instead of bulk dissolution of the entire mass of polymer. In this work, we demonstrate solvent-based fractionation of PVC as both single-step and sequential processes. Two solvent systems were considered: acetone–methanol and tetrahydrofuran–methanol. The content of methanol in the solvent systems was varied to adjust the overall “strength” of the solvent system, thus controlling the molecular weight of the recovered soluble and insoluble fractions of PVC. Sequential fractionation proved capable of producing PVC fractions with dispersities (<em>Đ</em>) as low as 1.14. Further, sequential fractionation of commercial PVC, containing additives, was highly promising for removing additives from the bulk (76.9%) of recovered PVC.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 2","pages":" 336-346"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00313f?page=search","citationCount":"0","resultStr":"{\"title\":\"Tuning solvent strength can fractionate PVC into ultra-low molecular weight material with low dispersity†\",\"authors\":\"Ali Al Alshaikh, Jaewoo Choi, Feranmi V. Olowookere, Caira McClairen, Owen G. Lubic, Pravin S. Shinde, C. Heath Turner and Jason E. Bara\",\"doi\":\"10.1039/D4LP00313F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The drive towards a circular economy in plastic materials has become a worldwide goal. It is apparent that conventional recycling alone falls well short of achieving circularity in plastic materials due to the complex formulations of commercial products. Poly(vinyl chloride) (PVC) is a post-consumer plastic that is especially challenging to recycle mechanically. However, compared to other commodity plastics, PVC is potentially well-suited for chemical recycling, especially <em>via</em> dissolution processes that selectively remove additives. Solvent-based recycling of PVC would circumvent thermomechanical processes that cause degradation of the polymer backbone. Yet, solvent-based recycling has its own set of considerations. Recycling a “Katamari” of mixed products of unknown origins (and potentially widely varying molecular weight distributions) might yield a purified PVC product that is of low value and/or without obvious utility. Thus, solvent fractionation of the feed into two or more products of relatively narrow molecular weight distributions may be required instead of bulk dissolution of the entire mass of polymer. In this work, we demonstrate solvent-based fractionation of PVC as both single-step and sequential processes. Two solvent systems were considered: acetone–methanol and tetrahydrofuran–methanol. The content of methanol in the solvent systems was varied to adjust the overall “strength” of the solvent system, thus controlling the molecular weight of the recovered soluble and insoluble fractions of PVC. Sequential fractionation proved capable of producing PVC fractions with dispersities (<em>Đ</em>) as low as 1.14. Further, sequential fractionation of commercial PVC, containing additives, was highly promising for removing additives from the bulk (76.9%) of recovered PVC.</p>\",\"PeriodicalId\":101139,\"journal\":{\"name\":\"RSC Applied Polymers\",\"volume\":\" 2\",\"pages\":\" 336-346\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00313f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Polymers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00313f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00313f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推动塑料材料的循环经济已成为一个全球性的目标。很明显,由于商业产品的复杂配方,仅靠传统的回收远远不能实现塑料材料的循环利用。聚氯乙烯(PVC)是一种消费后塑料,机械回收尤其具有挑战性。然而,与其他商品塑料相比,PVC可能非常适合化学回收,特别是通过选择性去除添加剂的溶解过程。以溶剂为基础的PVC回收可以避免导致聚合物骨架降解的热机械过程。然而,溶剂型回收有其自身的考虑因素。回收“Katamari”混合产品的来源不明(和潜在的广泛不同的分子量分布)可能会产生纯化的PVC产品,是低价值和/或没有明显的用途。因此,可能需要用溶剂将进料分馏成两种或两种以上分子量分布相对较窄的产物,而不是整个聚合物的整体溶解。在这项工作中,我们展示了PVC的溶剂型分馏作为单步和顺序过程。考虑了两种溶剂体系:丙酮-甲醇和四氢呋喃-甲醇。通过改变溶剂体系中甲醇的含量来调节溶剂体系的整体“强度”,从而控制回收的PVC可溶和不溶组分的分子量。顺序分馏证明能够生产分散度(Đ)低至1.14的PVC馏分。此外,含添加剂的商业PVC的顺序分馏对于从回收的大块(76.9%)PVC中去除添加剂是非常有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning solvent strength can fractionate PVC into ultra-low molecular weight material with low dispersity†

Tuning solvent strength can fractionate PVC into ultra-low molecular weight material with low dispersity†

The drive towards a circular economy in plastic materials has become a worldwide goal. It is apparent that conventional recycling alone falls well short of achieving circularity in plastic materials due to the complex formulations of commercial products. Poly(vinyl chloride) (PVC) is a post-consumer plastic that is especially challenging to recycle mechanically. However, compared to other commodity plastics, PVC is potentially well-suited for chemical recycling, especially via dissolution processes that selectively remove additives. Solvent-based recycling of PVC would circumvent thermomechanical processes that cause degradation of the polymer backbone. Yet, solvent-based recycling has its own set of considerations. Recycling a “Katamari” of mixed products of unknown origins (and potentially widely varying molecular weight distributions) might yield a purified PVC product that is of low value and/or without obvious utility. Thus, solvent fractionation of the feed into two or more products of relatively narrow molecular weight distributions may be required instead of bulk dissolution of the entire mass of polymer. In this work, we demonstrate solvent-based fractionation of PVC as both single-step and sequential processes. Two solvent systems were considered: acetone–methanol and tetrahydrofuran–methanol. The content of methanol in the solvent systems was varied to adjust the overall “strength” of the solvent system, thus controlling the molecular weight of the recovered soluble and insoluble fractions of PVC. Sequential fractionation proved capable of producing PVC fractions with dispersities (Đ) as low as 1.14. Further, sequential fractionation of commercial PVC, containing additives, was highly promising for removing additives from the bulk (76.9%) of recovered PVC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信