精氨酸功能化水凝胶作为一种新型大气集水材料†

Moki K. Thanusing, Brett L. Pollard and Luke A. Connal
{"title":"精氨酸功能化水凝胶作为一种新型大气集水材料†","authors":"Moki K. Thanusing, Brett L. Pollard and Luke A. Connal","doi":"10.1039/D4LP00373J","DOIUrl":null,"url":null,"abstract":"<p >Atmospheric water harvesting is a versatile but underutilised source of potable water. In this study, a poly(HEMA-<em>co</em>-PEGMA) linear copolymer and PEGDMA-crosslinked hydrogel were post-functionalised using Steglich esterification to attach <small>L</small>-arginine onto HEMA side chains. The water-harvesting properties of the resulting polymers were then tested. The functionalised polymers had a water uptake of 130–150 mg g<small><sup>−1</sup></small> water after 24 hours. The thermal phase transitions were around 60–80 °C, however this can be easily adjusted by varying composition and degree of functionalisation. Notably, there was a significant decrease in the rate of water uptake after 2–3 hours. This property was further explored with a rapid cycling test, in which 70-minute water-harvesting cycles yielded 2 g water per gram of polymer after 24 hours. The data presented in this body of work showcases the water-harvesting potential of guanidinium moieties, as well as highlighting the broad scope of materials and synthetic methods that could be used for developing water-harvesting polymeric materials.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 2","pages":" 480-487"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00373j?page=search","citationCount":"0","resultStr":"{\"title\":\"Arginine-functionalised hydrogels as a novel atmospheric water-harvesting material†\",\"authors\":\"Moki K. Thanusing, Brett L. Pollard and Luke A. Connal\",\"doi\":\"10.1039/D4LP00373J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Atmospheric water harvesting is a versatile but underutilised source of potable water. In this study, a poly(HEMA-<em>co</em>-PEGMA) linear copolymer and PEGDMA-crosslinked hydrogel were post-functionalised using Steglich esterification to attach <small>L</small>-arginine onto HEMA side chains. The water-harvesting properties of the resulting polymers were then tested. The functionalised polymers had a water uptake of 130–150 mg g<small><sup>−1</sup></small> water after 24 hours. The thermal phase transitions were around 60–80 °C, however this can be easily adjusted by varying composition and degree of functionalisation. Notably, there was a significant decrease in the rate of water uptake after 2–3 hours. This property was further explored with a rapid cycling test, in which 70-minute water-harvesting cycles yielded 2 g water per gram of polymer after 24 hours. The data presented in this body of work showcases the water-harvesting potential of guanidinium moieties, as well as highlighting the broad scope of materials and synthetic methods that could be used for developing water-harvesting polymeric materials.</p>\",\"PeriodicalId\":101139,\"journal\":{\"name\":\"RSC Applied Polymers\",\"volume\":\" 2\",\"pages\":\" 480-487\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00373j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Polymers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00373j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00373j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大气水收集是一种用途广泛但未得到充分利用的饮用水来源。在这项研究中,聚(HEMA-co- pegma)线性共聚物和pegma交联水凝胶使用Steglich酯化后功能化,将l -精氨酸连接到HEMA侧链上。然后测试了所得聚合物的集水性能。24小时后,功能化聚合物的吸水率为130-150 mg g−1。热相变约为60-80°C,但这可以很容易地通过改变组成和功能化程度来调整。值得注意的是,2-3小时后吸水性明显下降。通过快速循环测试进一步探索了这种特性,其中70分钟的集水循环在24小时后每克聚合物产生2克水。本工作中提供的数据显示了胍基团的集水潜力,并突出了可用于开发集水聚合材料的材料和合成方法的广泛范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Arginine-functionalised hydrogels as a novel atmospheric water-harvesting material†

Arginine-functionalised hydrogels as a novel atmospheric water-harvesting material†

Atmospheric water harvesting is a versatile but underutilised source of potable water. In this study, a poly(HEMA-co-PEGMA) linear copolymer and PEGDMA-crosslinked hydrogel were post-functionalised using Steglich esterification to attach L-arginine onto HEMA side chains. The water-harvesting properties of the resulting polymers were then tested. The functionalised polymers had a water uptake of 130–150 mg g−1 water after 24 hours. The thermal phase transitions were around 60–80 °C, however this can be easily adjusted by varying composition and degree of functionalisation. Notably, there was a significant decrease in the rate of water uptake after 2–3 hours. This property was further explored with a rapid cycling test, in which 70-minute water-harvesting cycles yielded 2 g water per gram of polymer after 24 hours. The data presented in this body of work showcases the water-harvesting potential of guanidinium moieties, as well as highlighting the broad scope of materials and synthetic methods that could be used for developing water-harvesting polymeric materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信