Philipp Hinz;Adrian Diepolder;Giorgio Fois;Manfred Frick;Christian Damm
{"title":"毫米波法测定体外上皮肺细胞活力","authors":"Philipp Hinz;Adrian Diepolder;Giorgio Fois;Manfred Frick;Christian Damm","doi":"10.1109/JMW.2025.3527900","DOIUrl":null,"url":null,"abstract":"This work presents details of a novel measurement approach in the mm-wave range which enables the measurement of epithelial lung cells under <italic>in vitro</i> conditions. The setup is able to perform contact- and interaction-free measurements, while providing an air-liquid interface for fully-differentiated human airway epithelial primary cells. The measurement setup is adapted to the biologic state-of-the-art cultivation environment of these cells. Therefore, all relevant components of this environment are discussed regarding their electromagnetic impact on the measurement. The utilized culture media are electrically characterized at <inline-formula><tex-math>$37 \\,\\mathrm{^{\\circ }C}$</tex-math></inline-formula>. Planar resonators are employed as a sensor structure to translate changes within the cell layer to an electric response. The design process of the resonators is discussed, and a lumped-element model is established and fitted to measured data for evaluating the results. The fabrication process of the sensor structures is verified both biologically and electrically. A dielectric waveguide is utilized to perform temperature-compensated reflection measurements of the sensor structure. First measurement results of epithelial lung cells in the J-band from <inline-formula><tex-math>$220 \\,\\mathrm{G}\\mathrm{Hz}$</tex-math></inline-formula> to <inline-formula><tex-math>$325 \\,\\mathrm{G}\\mathrm{Hz}$</tex-math></inline-formula> are presented.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 2","pages":"257-268"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10878488","citationCount":"0","resultStr":"{\"title\":\"In Vitro Epithelial Lung Cell Vitality Measurements With mm-Waves\",\"authors\":\"Philipp Hinz;Adrian Diepolder;Giorgio Fois;Manfred Frick;Christian Damm\",\"doi\":\"10.1109/JMW.2025.3527900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents details of a novel measurement approach in the mm-wave range which enables the measurement of epithelial lung cells under <italic>in vitro</i> conditions. The setup is able to perform contact- and interaction-free measurements, while providing an air-liquid interface for fully-differentiated human airway epithelial primary cells. The measurement setup is adapted to the biologic state-of-the-art cultivation environment of these cells. Therefore, all relevant components of this environment are discussed regarding their electromagnetic impact on the measurement. The utilized culture media are electrically characterized at <inline-formula><tex-math>$37 \\\\,\\\\mathrm{^{\\\\circ }C}$</tex-math></inline-formula>. Planar resonators are employed as a sensor structure to translate changes within the cell layer to an electric response. The design process of the resonators is discussed, and a lumped-element model is established and fitted to measured data for evaluating the results. The fabrication process of the sensor structures is verified both biologically and electrically. A dielectric waveguide is utilized to perform temperature-compensated reflection measurements of the sensor structure. First measurement results of epithelial lung cells in the J-band from <inline-formula><tex-math>$220 \\\\,\\\\mathrm{G}\\\\mathrm{Hz}$</tex-math></inline-formula> to <inline-formula><tex-math>$325 \\\\,\\\\mathrm{G}\\\\mathrm{Hz}$</tex-math></inline-formula> are presented.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"5 2\",\"pages\":\"257-268\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10878488\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10878488/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10878488/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
In Vitro Epithelial Lung Cell Vitality Measurements With mm-Waves
This work presents details of a novel measurement approach in the mm-wave range which enables the measurement of epithelial lung cells under in vitro conditions. The setup is able to perform contact- and interaction-free measurements, while providing an air-liquid interface for fully-differentiated human airway epithelial primary cells. The measurement setup is adapted to the biologic state-of-the-art cultivation environment of these cells. Therefore, all relevant components of this environment are discussed regarding their electromagnetic impact on the measurement. The utilized culture media are electrically characterized at $37 \,\mathrm{^{\circ }C}$. Planar resonators are employed as a sensor structure to translate changes within the cell layer to an electric response. The design process of the resonators is discussed, and a lumped-element model is established and fitted to measured data for evaluating the results. The fabrication process of the sensor structures is verified both biologically and electrically. A dielectric waveguide is utilized to perform temperature-compensated reflection measurements of the sensor structure. First measurement results of epithelial lung cells in the J-band from $220 \,\mathrm{G}\mathrm{Hz}$ to $325 \,\mathrm{G}\mathrm{Hz}$ are presented.