在手性导电聚合物中同时加入磁性和等离子体纳米晶体产生前所未有的磁光响应

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-19 DOI:10.1002/smll.202409752
Shema Abraham, Avisek Dutta, Jojo P. Joseph, B. Medini Rajapakse, Alexander Baev, Hao Zeng, Luis Velarde, Paras N. Prasad, Mark T. Swihart
{"title":"在手性导电聚合物中同时加入磁性和等离子体纳米晶体产生前所未有的磁光响应","authors":"Shema Abraham,&nbsp;Avisek Dutta,&nbsp;Jojo P. Joseph,&nbsp;B. Medini Rajapakse,&nbsp;Alexander Baev,&nbsp;Hao Zeng,&nbsp;Luis Velarde,&nbsp;Paras N. Prasad,&nbsp;Mark T. Swihart","doi":"10.1002/smll.202409752","DOIUrl":null,"url":null,"abstract":"<p>The creation of next-generation flexible and conformable magneto-optic (MO) materials with dramatically enhanced Verdet constant will significantly advance technologies, including optical isolation, magnetic quantum spin fluctuation measurements, and cold atom spin coherence probes, while opening new possibilities for mapping weakly emanating magnetic fields from sources, including microelectronics or brain activity. The results presented here show that the natural coupling of electric and magnetic dipoles in a chiral polymer with large optical activity (circular birefringence) is significantly enhanced by combined plasmonic field and magnetic interactions of plasmonic nanostars and magnetic nanoparticles to yield a dramatically increased Verdet constant within an optical path of a few hundred nanometers. A 175 ± 10 nm film of this material produces up to 600 mdeg of relative MO rotation at 510 nm, which translates to a record-high Verdet constant of 3.1 × 10<sup>7</sup> deg T<sup>−1</sup> m<sup>−1</sup> at 93 K, more than two orders of magnitude higher than the current state of the art MO garnet crystals. The room temperature Verdet constant substantially exceeds that of other thin film nanocomposites reported to date. Manipulation of electric and magnetic coupling offers an unprecedented opportunity to tailor the magnitude, sign, and spectral dispersion of the Verdet constant over a broad range of wavelengths.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 18","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Incorporation of Magnetic and Plasmonic Nanocrystals in a Chiral Conducting Polymer Yields Unprecedented Magneto-Optic Response\",\"authors\":\"Shema Abraham,&nbsp;Avisek Dutta,&nbsp;Jojo P. Joseph,&nbsp;B. Medini Rajapakse,&nbsp;Alexander Baev,&nbsp;Hao Zeng,&nbsp;Luis Velarde,&nbsp;Paras N. Prasad,&nbsp;Mark T. Swihart\",\"doi\":\"10.1002/smll.202409752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The creation of next-generation flexible and conformable magneto-optic (MO) materials with dramatically enhanced Verdet constant will significantly advance technologies, including optical isolation, magnetic quantum spin fluctuation measurements, and cold atom spin coherence probes, while opening new possibilities for mapping weakly emanating magnetic fields from sources, including microelectronics or brain activity. The results presented here show that the natural coupling of electric and magnetic dipoles in a chiral polymer with large optical activity (circular birefringence) is significantly enhanced by combined plasmonic field and magnetic interactions of plasmonic nanostars and magnetic nanoparticles to yield a dramatically increased Verdet constant within an optical path of a few hundred nanometers. A 175 ± 10 nm film of this material produces up to 600 mdeg of relative MO rotation at 510 nm, which translates to a record-high Verdet constant of 3.1 × 10<sup>7</sup> deg T<sup>−1</sup> m<sup>−1</sup> at 93 K, more than two orders of magnitude higher than the current state of the art MO garnet crystals. The room temperature Verdet constant substantially exceeds that of other thin film nanocomposites reported to date. Manipulation of electric and magnetic coupling offers an unprecedented opportunity to tailor the magnitude, sign, and spectral dispersion of the Verdet constant over a broad range of wavelengths.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 18\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409752\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409752","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

下一代柔性和保形磁光学(MO)材料具有显著增强的维尔德常数,它的问世将极大地推动光学隔离、磁量子自旋波动测量和冷原子自旋相干探针等技术的发展,同时也为绘制微电子或大脑活动等来源的微弱发射磁场提供了新的可能性。本文介绍的研究结果表明,具有大光学活性(圆双折射)的手性聚合物中的电偶极子和磁偶极子的自然耦合在等离子体纳米星和磁性纳米粒子的等离子体场和磁相互作用的共同作用下得到了显著增强,从而在几百纳米的光路范围内大幅提高了维尔德常数。这种材料的 175 ± 10 nm 薄膜在 510 nm 处可产生高达 600 mdeg 的相对 MO 旋转,这意味着在 93 K 时的 Verdet 常数达到了创纪录的 3.1 × 107 deg T-1 m-1,比目前最先进的 MO 石榴石晶体高出两个数量级以上。室温维尔德常数大大超过了迄今报道的其他薄膜纳米复合材料。操纵电耦合和磁耦合提供了一个前所未有的机会,可以在广泛的波长范围内定制维尔德常数的大小、符号和光谱分散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous Incorporation of Magnetic and Plasmonic Nanocrystals in a Chiral Conducting Polymer Yields Unprecedented Magneto-Optic Response

Simultaneous Incorporation of Magnetic and Plasmonic Nanocrystals in a Chiral Conducting Polymer Yields Unprecedented Magneto-Optic Response

Simultaneous Incorporation of Magnetic and Plasmonic Nanocrystals in a Chiral Conducting Polymer Yields Unprecedented Magneto-Optic Response

The creation of next-generation flexible and conformable magneto-optic (MO) materials with dramatically enhanced Verdet constant will significantly advance technologies, including optical isolation, magnetic quantum spin fluctuation measurements, and cold atom spin coherence probes, while opening new possibilities for mapping weakly emanating magnetic fields from sources, including microelectronics or brain activity. The results presented here show that the natural coupling of electric and magnetic dipoles in a chiral polymer with large optical activity (circular birefringence) is significantly enhanced by combined plasmonic field and magnetic interactions of plasmonic nanostars and magnetic nanoparticles to yield a dramatically increased Verdet constant within an optical path of a few hundred nanometers. A 175 ± 10 nm film of this material produces up to 600 mdeg of relative MO rotation at 510 nm, which translates to a record-high Verdet constant of 3.1 × 107 deg T−1 m−1 at 93 K, more than two orders of magnitude higher than the current state of the art MO garnet crystals. The room temperature Verdet constant substantially exceeds that of other thin film nanocomposites reported to date. Manipulation of electric and magnetic coupling offers an unprecedented opportunity to tailor the magnitude, sign, and spectral dispersion of the Verdet constant over a broad range of wavelengths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信