基于三甲氧基硅烷小分子材料的常规钙钛矿太阳能电池埋藏界面钝化研究

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinxin Xu, Qiang Lou, Jiahao Wu, Haocheng Huang, Hao Zhang, Bosen Zhang, Maojun Sun, Lin Zhao, Jingyi Xu, Hang Zhou
{"title":"基于三甲氧基硅烷小分子材料的常规钙钛矿太阳能电池埋藏界面钝化研究","authors":"Xinxin Xu, Qiang Lou, Jiahao Wu, Haocheng Huang, Hao Zhang, Bosen Zhang, Maojun Sun, Lin Zhao, Jingyi Xu, Hang Zhou","doi":"10.1021/acsami.5c01522","DOIUrl":null,"url":null,"abstract":"Numerous issues influencing the device performance at the buried interface of perovskite solar cells exist. Modifying the interface constitutes a key to enhancing the efficiency and stability of solar cells. In this work, we propose a small molecule material, (3-bromopropyl)trimethoxysilane (BTS), as an efficient modifier for the buried interface of regular perovskite solar cells. It can interact with the −OH groups on SnO<sub>2</sub> and the uncoordinated Pb and the formamidinium (FA) vacancies in the perovskite, thereby passivating the defects in the SnO<sub>2</sub> and perovskite layers, improving the extraction and transportation of charge carriers at the interface, inhibiting the nonradiative recombination of charge carriers, and thereby increasing the carrier lifetime. The introduction of BTS significantly improves the performance of the solar cells, with the open-circuit voltage (<i>V</i><sub>oc</sub>) reaching 1.169 V and an increase in power conversion efficiency (PCE) from 19.39% to 23.60%. Additionally, the devices with interface modification exhibit outstanding stability, retaining 85.7% of the initial PCE value after being aged for 160 days under a relative humidity of 35% at room temperature.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"19 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buried Interface Passivation of Regular Perovskite Solar Cells Using Trimethoxysilane-Based Small Molecule Materials\",\"authors\":\"Xinxin Xu, Qiang Lou, Jiahao Wu, Haocheng Huang, Hao Zhang, Bosen Zhang, Maojun Sun, Lin Zhao, Jingyi Xu, Hang Zhou\",\"doi\":\"10.1021/acsami.5c01522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous issues influencing the device performance at the buried interface of perovskite solar cells exist. Modifying the interface constitutes a key to enhancing the efficiency and stability of solar cells. In this work, we propose a small molecule material, (3-bromopropyl)trimethoxysilane (BTS), as an efficient modifier for the buried interface of regular perovskite solar cells. It can interact with the −OH groups on SnO<sub>2</sub> and the uncoordinated Pb and the formamidinium (FA) vacancies in the perovskite, thereby passivating the defects in the SnO<sub>2</sub> and perovskite layers, improving the extraction and transportation of charge carriers at the interface, inhibiting the nonradiative recombination of charge carriers, and thereby increasing the carrier lifetime. The introduction of BTS significantly improves the performance of the solar cells, with the open-circuit voltage (<i>V</i><sub>oc</sub>) reaching 1.169 V and an increase in power conversion efficiency (PCE) from 19.39% to 23.60%. Additionally, the devices with interface modification exhibit outstanding stability, retaining 85.7% of the initial PCE value after being aged for 160 days under a relative humidity of 35% at room temperature.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c01522\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01522","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

影响钙钛矿太阳能电池埋藏界面性能的问题很多。改变界面是提高太阳能电池效率和稳定性的关键。在这项工作中,我们提出了一种小分子材料,(3-溴丙基)三甲氧基硅烷(BTS),作为常规钙钛矿太阳能电池埋藏界面的有效改性剂。它可以与SnO2上的−OH基团以及钙钛矿中不配位的Pb和甲酰胺(FA)空位相互作用,从而钝化SnO2和钙钛矿层中的缺陷,改善界面处载流子的提取和输运,抑制载流子的非辐射重组,从而提高载流子寿命。BTS的引入显著提高了太阳能电池的性能,开路电压(Voc)达到1.169 V,功率转换效率(PCE)从19.39%提高到23.60%。此外,经过界面修饰的器件表现出出色的稳定性,在室温相对湿度为35%的条件下老化160天后,其PCE值仍保持在初始值的85.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Buried Interface Passivation of Regular Perovskite Solar Cells Using Trimethoxysilane-Based Small Molecule Materials

Buried Interface Passivation of Regular Perovskite Solar Cells Using Trimethoxysilane-Based Small Molecule Materials
Numerous issues influencing the device performance at the buried interface of perovskite solar cells exist. Modifying the interface constitutes a key to enhancing the efficiency and stability of solar cells. In this work, we propose a small molecule material, (3-bromopropyl)trimethoxysilane (BTS), as an efficient modifier for the buried interface of regular perovskite solar cells. It can interact with the −OH groups on SnO2 and the uncoordinated Pb and the formamidinium (FA) vacancies in the perovskite, thereby passivating the defects in the SnO2 and perovskite layers, improving the extraction and transportation of charge carriers at the interface, inhibiting the nonradiative recombination of charge carriers, and thereby increasing the carrier lifetime. The introduction of BTS significantly improves the performance of the solar cells, with the open-circuit voltage (Voc) reaching 1.169 V and an increase in power conversion efficiency (PCE) from 19.39% to 23.60%. Additionally, the devices with interface modification exhibit outstanding stability, retaining 85.7% of the initial PCE value after being aged for 160 days under a relative humidity of 35% at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信